
SOI Workshop 2015
Network Flows

Daniel Graf

ETH Zürich

November 8, 2015

Network Flow: Example

Network Flow: Example

source

sink

2

2

1

2

1

22

1

3

Network Flow: Problem Statement

Input: A flow network consisting of
directed graph G = (V ,E)
source and sink s, t ∈ V
edge capacity c : E → N.

s

0

2

t

1

3

1

1

1

1

2

1

2

1

Output: A flow function f : E → N such
that:

all capacity constraints are satisfied:
∀u, v ∈ V : 0 ≤ f (u, v) ≤ c(u, v)
(no pipe is overflowed)
flow is conserved at every vertex:
∀u ∈ V \ {s, t} :∑

(v ,u)∈E f (v , u) =
∑

(u,v)∈E f (u, v)
(no vertex is leaking)
the total flow is maximal:
|f | =

∑
v∈V f (s, v)−

∑
v∈V f (v , s) =∑

u∈V f (u, t)−
∑

u∈V f (t, u)

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
Problem: We can get stuck at a local optimum.

s t

c

a b

d

2 2

2

24

31

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
Problem: We can get stuck at a local optimum.

s t

c

a b

d

2 2

2

24

31

1

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
Problem: We can get stuck at a local optimum.

s t

c

a b

d

2 2

1

24

20

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
Problem: We can get stuck at a local optimum.

s t

c

a b

d

2 2

1

24

20
1

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
Problem: We can get stuck at a local optimum.

s t

c

a b

d

1 1

0

24

20

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s t

c

a b

d

1/2 1/2

2/2

0/20/4

1/31/1

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s t

c

a b

d

1

1 1

1

2

0

4

1 1

0

2
0

20

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s t

c

a b

d

1

1 1

1

2

0

4

1 1

0

2
0

20

1

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s t

c

a b

d

2

1 0

2

2

1

3

0 0

0

1
1

30

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s

v

w

t

C C

C

1

C

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s

v

w

t

C C

C

1

C

1

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s

v

w

t

C C-1

C

1

C-1

1
1

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s

v

w

t

C C-1

C

1

C-1

1
11

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s

v

w

t

C C

C

1

C

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s

v

w

t

C C

C

1

C
C

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].

s

v

w

t

C C

C

1

C
C

C

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Edmonds-Karp Maximum Flow Algorithm

The headers and edge struct:
1 // Sample implementation of the Edmonds Karp Algorithm
2 // Daniel Graf , grafdan@ethz.ch, 7.11.2015
3 #i n c l u d e <ios t r eam >
4 #i n c l u d e <vec to r >
5 #i n c l u d e <c a s s e r t >
6 #i n c l u d e <queue>
7

8 #d e f i n e INF 1000000000
9 typedef long long int i n ;

10 using namespace s t d ;
11

12 struct Edge {
13 i n from , to , f low , cap , r e v ;
14 i n r e s i d u a l _ c a p a c i t y () {
15 return cap−f l ow ;
16 }
17 } ;
18 . . .

Edmonds-Karp Maximum Flow Algorithm

Graph struct, add_edge function:
1 . . .
2 struct Graph {
3 i n s , t ;
4 vec to r <vec to r <Edge> > E ; // adjacency -list of edges
5 vec to r <Edge∗> P ; // predecessor map for the BFS
6

7 Graph (i n N) {
8 E = vec to r <vec to r <Edge> >(N) ;
9 }

10

11 void add_edge (i n from , i n to , i n cap) {
12 if (from==to) return ;
13 E [from] . push_back ({ from , to , 0 , cap , (i n)E [to] . s i z e () }) ;
14 E [to] . push_back ({ to , from , 0 , 0 , (i n)E [from] . s i z e () −1}) ;
15 }
16 . . .

Edmonds-Karp Maximum Flow Algorithm

Reset all flow values:
1 . . .
2 void r e s e t _ f l o w () {
3 for (i n v=0; v<E . s i z e () ; v++) {
4 for (i n e =0; e<E [v] . s i z e () ; e++) {
5 E [v] [e] . f l ow = 0 ;
6 }
7 }
8 }
9 . . .

Edmonds-Karp Maximum Flow Algorithm

Can we find a path from s to t?
1 bool f i n d _ f l o w () {
2 P = vec to r <Edge∗>(E . s i z e () ,NULL) ;
3 // Breadth First Search through the edges with remaining capacity
4 queue<in> Q; Q. push (s) ;
5 while (!Q. empty () && P[t]==NULL) {
6 i n v = Q. f r o n t () ; Q. pop () ;
7 for (i n e =0; e<E [v] . s i z e () ; e++) {
8 if (E [v] [e] . r e s i d u a l _ c a p a c i t y ()==0) {
9 continue ;

10 }
11 i n w = E [v] [e] . to ;
12 if (P [w]==NULL) {
13 P[w] = &(E [v] [e]) ;
14 Q. push (w) ;
15 }
16 }
17 } . . .

Edmonds-Karp Maximum Flow Algorithm

How much can we fit through that path from s to t?
1 . . .
2 // Check if there is a path to t
3 if (P [t] == NULL) {
4 return 0 ;
5 }
6 // Check the minimum capacity
7 i n f l ow = INF ;
8 i n pos = t ;
9 while (pos != s) {

10 f l ow = min (f low , P [pos]−> r e s i d u a l _ c a p a c i t y ()) ;
11 pos = P[pos]−>from ;
12 }
13 return f l ow ;
14 }

Edmonds-Karp Maximum Flow Algorithm

Increase the flow along the path and reduce the reverse edges.
1 void update_f low (i n f l ow) {
2 i n pos = t ;
3 while (pos != s) {
4 // cout << "update at vertex " << pos << endl;
5 P[pos]−>f l ow += f l ow ;
6 E [P [pos]−>to] [P [pos]−>r e v] . f l ow −= f l ow ;
7 pos = P[pos]−>from ;
8 }
9 }

Edmonds-Karp Maximum Flow Algorithm

Repeatedly search for the shortest augmenting path while one exists.
1 i n edmonds_karp_max_flow (i n _s , i n _t) {
2 s = _s ;
3 t = _t ;
4 r e s e t _ f l o w () ;
5 i n f l ow = 0 ;
6 i n new_flow ;
7 do {
8 new_flow = f i n d _ f l o w () ;
9 f l ow += new_flow ;

10 if (new_flow > 0) {
11 update_f low (new_flow) ;
12 }
13 } while (new_flow > 0) ;
14 return f l ow ;
15 }
16 } ; // end of the Graph struct

Edmonds-Karp Maximum Flow Algorithm

Read graph from input and call the algorithm.
1 void read_graph_from_std in (Graph &G) {
2 i n N,M;
3 c i n >> N >> M;
4 G = Graph (N) ;
5 for (i n m=0; m<M; m++) {
6 i n a , b , c ;
7 c i n >> a >> b >> c ;
8 G. add_edge (a , b , c) ;
9 }

10 }
11 int main () {
12 Graph G(0) ;
13 read_graph_from_std in (G) ;
14 i n s , t ; c i n >> s >> t ;
15 i n r e s = G. edmonds_karp_max_flow (s , t) ;
16 cout << "max␣flow:␣" << r e s << en d l ;
17 }

Common tricks

Multiple sources/sinks:

s
1

s
2

t
2

t
1

Undirected Graphs

v w
4

Vertex Capacities

v

Minimum Flow per Edge

[Exercise]

Common tricks

Multiple sources/sinks:

s
1

s
2

t
2

t
1

s t

∑

!∈"
#!

∑

!∈"
#!

Undirected Graphs

v w
4

Vertex Capacities

v

Minimum Flow per Edge

[Exercise]

Common tricks

Multiple sources/sinks:

s
1

s
2

t
2

t
1

s t

∑

!∈"
#!

∑

!∈"
#!

Undirected Graphs

v w
4

v w

4

4

Vertex Capacities

v

Minimum Flow per Edge

[Exercise]

Common tricks

Multiple sources/sinks:

s
1

s
2

t
2

t
1

s t

∑

!∈"
#!

∑

!∈"
#!

Undirected Graphs

v w4

v w

4

4

v w

3/4

2/4

Vertex Capacities

v

Minimum Flow per Edge

[Exercise]

Common tricks

Multiple sources/sinks:

s
1

s
2

t
2

t
1

s t

∑

!∈"
#!

∑

!∈"
#!

Undirected Graphs

v w4

v w

4

4

v w

3/4

2/4

v w

1/4

0/4

Vertex Capacities

v

Minimum Flow per Edge

[Exercise]

Common tricks

Multiple sources/sinks:

s
1

s
2

t
2

t
1

s t

∑

!∈"
#!

∑

!∈"
#!

Undirected Graphs

v w4

v w

4

4

v w

3/4

2/4

v w

1/4

0/4

Vertex Capacities

v v v
1

Minimum Flow per Edge

[Exercise]

Common tricks

Multiple sources/sinks:

s
1

s
2

t
2

t
1

s t

∑

!∈"
#!

∑

!∈"
#!

Undirected Graphs

v w4

v w

4

4

v w

3/4

2/4

v w

1/4

0/4

Vertex Capacities

v v v
1

Minimum Flow per Edge

[Exercise]

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

t
1

2

6

s t

Map:
search.ch,
TomTom,
swisstopo,
OSM

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

t
1

2

6

s t

Map:
search.ch,
TomTom,
swisstopo,
OSM

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

t
1

2

6

s t

Map:
search.ch,
TomTom,
swisstopo,
OSM

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

t
1

2

6

s t

Map:
search.ch,
TomTom,
swisstopo,
OSM

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

Is this a flow problem? No.
Can it be turned into a flow problem? Maybe.
Build directed street graph by adding edges in both directions.
Set all capacities to 1.

Lemma
In a directed graph with unit capacities, the maximum number of edge-disjoint
s-t-paths is equal to the maximum flow from s to t.

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

Is this a flow problem? No.
Can it be turned into a flow problem? Maybe.
Build directed street graph by adding edges in both directions.
Set all capacities to 1.

Lemma
In a directed graph with unit capacities, the maximum number of edge-disjoint
s-t-paths is equal to the maximum flow from s to t.

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

Is this a flow problem? No.
Can it be turned into a flow problem? Maybe.
Build directed street graph by adding edges in both directions.
Set all capacities to 1.

Lemma
In a directed graph with unit capacities, the maximum number of edge-disjoint
s-t-paths is equal to the maximum flow from s to t.

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

Is this a flow problem? No.
Can it be turned into a flow problem? Maybe.
Build directed street graph by adding edges in both directions.
Set all capacities to 1.

Lemma
In a directed graph with unit capacities, the maximum number of edge-disjoint
s-t-paths is equal to the maximum flow from s to t.

Flow Application: Edge Disjoint Paths

t
1

2

6

s t

1

1

1

1

1 1 1

1

1

1

1

1
1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

Map:
search.ch,
TomTom,
swisstopo,
OSM

