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Network Flow: Problem Statement

Input: A flow network consisting of
directed graph G = (V ,E )
source and sink s, t ∈ V
edge capacity c : E → N.
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Output: A flow function f : E → N such
that:

all capacity constraints are satisfied:
∀u, v ∈ V : 0 ≤ f (u, v) ≤ c(u, v)
(no pipe is overflowed)
flow is conserved at every vertex:
∀u ∈ V \ {s, t} :∑

(v ,u)∈E f (v , u) =
∑

(u,v)∈E f (u, v)
(no vertex is leaking)
the total flow is maximal:
|f | =

∑
v∈V f (s, v)−

∑
v∈V f (v , s) =∑

u∈V f (u, t)−
∑

u∈V f (t, u)



Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
Problem: We can get stuck at a local optimum.
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Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
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Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
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Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Take any s-t-path and increase the flow along it.
Update capacities and repeat as long as we can.
Problem: We can get stuck at a local optimum.
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Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f |).
Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f |), O(nmmax c) and O(nm2). [BGL-Doc].
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Edmonds-Karp Maximum Flow Algorithm

The headers and edge struct:
1 // Sample implementation of the Edmonds Karp Algorithm
2 // Daniel Graf , grafdan@ethz.ch, 7.11.2015
3 #i n c l u d e <ios t r eam >
4 #i n c l u d e <vec to r >
5 #i n c l u d e <c a s s e r t >
6 #i n c l u d e <queue>
7

8 #d e f i n e INF 1000000000
9 typedef long long int i n ;

10 using namespace s t d ;
11

12 struct Edge {
13 i n from , to , f low , cap , r e v ;
14 i n r e s i d u a l _ c a p a c i t y ( ) {
15 return cap−f l ow ;
16 }
17 } ;
18 . . .



Edmonds-Karp Maximum Flow Algorithm

Graph struct, add_edge function:
1 . . .
2 struct Graph {
3 i n s , t ;
4 vec to r <vec to r <Edge> > E ; // adjacency -list of edges
5 vec to r <Edge∗> P ; // predecessor map for the BFS
6

7 Graph ( i n N) {
8 E = vec to r <vec to r <Edge> >(N) ;
9 }

10

11 void add_edge ( i n from , i n to , i n cap ) {
12 if ( from==to ) return ;
13 E [ from ] . push_back ({ from , to , 0 , cap , ( i n )E [ to ] . s i z e ( ) } ) ;
14 E [ to ] . push_back ({ to , from , 0 , 0 , ( i n )E [ from ] . s i z e () −1}) ;
15 }
16 . . .



Edmonds-Karp Maximum Flow Algorithm

Reset all flow values:
1 . . .
2 void r e s e t _ f l o w ( ) {
3 for ( i n v=0; v<E . s i z e ( ) ; v++) {
4 for ( i n e =0; e<E [ v ] . s i z e ( ) ; e++) {
5 E [ v ] [ e ] . f l ow = 0 ;
6 }
7 }
8 }
9 . . .



Edmonds-Karp Maximum Flow Algorithm

Can we find a path from s to t?
1 bool f i n d _ f l o w ( ) {
2 P = vec to r <Edge∗>(E . s i z e ( ) ,NULL ) ;
3 // Breadth First Search through the edges with remaining capacity
4 queue<in> Q; Q. push ( s ) ;
5 while ( !Q. empty ( ) && P[ t ]==NULL) {
6 i n v = Q. f r o n t ( ) ; Q. pop ( ) ;
7 for ( i n e =0; e<E [ v ] . s i z e ( ) ; e++) {
8 if (E [ v ] [ e ] . r e s i d u a l _ c a p a c i t y ()==0) {
9 continue ;

10 }
11 i n w = E [ v ] [ e ] . to ;
12 if (P [w]==NULL) {
13 P[w] = &(E [ v ] [ e ] ) ;
14 Q. push (w) ;
15 }
16 }
17 } . . .



Edmonds-Karp Maximum Flow Algorithm

How much can we fit through that path from s to t?
1 . . .
2 // Check if there is a path to t
3 if (P [ t ] == NULL) {
4 return 0 ;
5 }
6 // Check the minimum capacity
7 i n f l ow = INF ;
8 i n pos = t ;
9 while ( pos != s ) {

10 f l ow = min ( f low , P [ pos]−> r e s i d u a l _ c a p a c i t y ( ) ) ;
11 pos = P[ pos]−>from ;
12 }
13 return f l ow ;
14 }



Edmonds-Karp Maximum Flow Algorithm

Increase the flow along the path and reduce the reverse edges.
1 void update_f low ( i n f l ow ) {
2 i n pos = t ;
3 while ( pos != s ) {
4 // cout << "update at vertex " << pos << endl;
5 P[ pos]−>f l ow += f l ow ;
6 E [P [ pos]−>to ] [ P [ pos]−>r e v ] . f l ow −= f l ow ;
7 pos = P[ pos]−>from ;
8 }
9 }



Edmonds-Karp Maximum Flow Algorithm

Repeatedly search for the shortest augmenting path while one exists.
1 i n edmonds_karp_max_flow ( i n _s , i n _t ) {
2 s = _s ;
3 t = _t ;
4 r e s e t _ f l o w ( ) ;
5 i n f l ow = 0 ;
6 i n new_flow ;
7 do {
8 new_flow = f i n d _ f l o w ( ) ;
9 f l ow += new_flow ;

10 if ( new_flow > 0) {
11 update_f low ( new_flow ) ;
12 }
13 } while ( new_flow > 0 ) ;
14 return f l ow ;
15 }
16 } ; // end of the Graph struct



Edmonds-Karp Maximum Flow Algorithm

Read graph from input and call the algorithm.
1 void read_graph_from_std in ( Graph &G) {
2 i n N,M;
3 c i n >> N >> M;
4 G = Graph (N) ;
5 for ( i n m=0; m<M; m++) {
6 i n a , b , c ;
7 c i n >> a >> b >> c ;
8 G. add_edge ( a , b , c ) ;
9 }

10 }
11 int main ( ) {
12 Graph G( 0 ) ;
13 read_graph_from_std in (G ) ;
14 i n s , t ; c i n >> s >> t ;
15 i n r e s = G. edmonds_karp_max_flow ( s , t ) ;
16 cout << "max␣flow:␣" << r e s << en d l ;
17 }
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Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

t
1

2

6

s t

Map:
search.ch,
TomTom,
swisstopo,
OSM



Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

t
1

2

6

s t

Map:
search.ch,
TomTom,
swisstopo,
OSM



Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

t
1

2

6

s t

Map:
search.ch,
TomTom,
swisstopo,
OSM



Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

t
1

2

6

s t

Map:
search.ch,
TomTom,
swisstopo,
OSM



Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

Is this a flow problem? No.
Can it be turned into a flow problem? Maybe.
Build directed street graph by adding edges in both directions.
Set all capacities to 1.

Lemma
In a directed graph with unit capacities, the maximum number of edge-disjoint
s-t-paths is equal to the maximum flow from s to t.
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