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Network Flow: Problem Statement

Input: A flow network consisting of Output: A flow function f : E — N such

m directed graph G = (V, E) that:

m all capacity constraints are satisfied:
Vu,ve V:0<f(u,v)<c(uv)
(no pipe is overflowed)

m source and sink s, t € V

m edge capacity c: E — N.

m flow is conserved at every vertex:
Vue V\ {s, t}:
Z(v,u)eE f(v,u) = Z(u,v)EE f(u,v)
(no vertex is leaking)

m the total flow is maximal:
|f| = ZVEV f(S, V) - ZVGV f(V, S) =
Zuev f(ua t) - Zuev f(t7 u)
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m Take any s-t-path and increase the flow along it.
m Update capacities and repeat as long as we can.

m Problem: We can get stuck at a local optimum.
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m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.
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m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).
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Edmonds-Karp Maximum Flow Algorithm

The headers and edge struct:

1 // Sample implementation of the Edmonds Karp Algorithm
2 // Daniel Graf, grafdan@ethz.ch, 7.11.2015
3 #include <iostream>

4 #include <vector>

5 #include <cassert>

6 #include <queue>

7

8 #define INF 1000000000

9 typedef long long int in;

10 using namespace std;

1

2 struct Edge {

-

13 in from, to, flow, cap, rev;
14 in residual_capacity () {

15 return cap—flow;

16 }

o}

18



Edmonds-Karp Maximum Flow Algorithm

Graph struct, add_edge function:

struct Graph {
in s, t;
vector<vector<Edge> > E; // adjacency-list of edges
vector<Edgex> P; // predecessor map for the BFS

Graph(in N) {
E = vector<vector<Edge> >(N);
}

void add_edge(in from, in to, in cap) {
if (from=—to) return;
E[from]. push_back({from ,to,0,cap,(in)E[to]. size ()
E[to]. push_back({to,from,0,0,(in)E[from].size()—1
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Edmonds-Karp Maximum Flow Algorithm

Reset all flow values:

void reset_flow () {
for(in v=0; v<E.size (); v++) {
for(in e=0; e<E[v].size(); e++) {
E[v][e]. flow = 0;

© o N o O~ W N =



Edmonds-Karp Maximum Flow Algorithm

Can we find a path from s to t?

1 bool find_flow () {

2 P = vector<Edgex>(E.size () ,NULL);

3 // Breadth First Search through the edges with remaining capacity
4 queue<in> Q; Q.push(s);

5 while (!Q.empty () && P[t]==NULL) {

6 in v=Q.front(); Q.pop();

7 for(in e=0; e<E[v].size(); e++) {

8 if (E[v][e].residual_capacity()==0) {

9 continue;

10

1 in w=E[v][e].to;

12 lf(P[W]::NULL) {

13 Plw] = &(E[v][e]);
14 Q. push(w);

15 }

16 }
7 oo



Edmonds-Karp Maximum Flow Algorithm

How much can we fit through that path from s to t?

// Check if there is a path to t
if (P[t] = NULL) {

return O;
}

// Check the minimum capacity

in flow = INF;

in pos = t;

while(pos != s) {
flow = min(flow, P[pos]—>residual_capacity());
pos = P[pos]—>from;

© o N o O~ W N =
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return flow;
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Edmonds-Karp Maximum Flow Algorithm

Increase the flow along the path and reduce the reverse edges.

1 void update_flow(in flow) {

2 in pos = t;

3 while(pos != s) {

4 // cout << "update at vertex " << pos << endl;
5 P[pos]—->flow += flow;

6 E[P[pos]—->to][P[pos]—>rev]. flow —= flow;

7 pos = P[pos]—>from;

8

9

}



Edmonds-Karp Maximum Flow Algorithm

Repeatedly search for the shortest augmenting path while one exists.

1 in edmonds_karp_max_flow(in _s, in _t) {
2 s = _s;

3 t = _t;

4 reset_flow ();

5 in flow = 0;

6 in new_flow;

7 do {

8 new_flow = find_flow ();

9 flow += new_flow;

10 if (new_flow > 0) {

11 update_flow (new_flow);
12 }

13 } while(new_flow > 0);

14 return flow ;

15 }

16 }; // end of the Graph struct



Edmonds-Karp Maximum Flow Algorithm

Read graph from input and call the algorithm.

1 void read_graph_from_stdin(Graph &G) {

2 in N,M;

3 cin >> N >> M;

4 G = Graph(N);

5 for(in m=0; m<M; mt+) {

6 in a,b,c;

7 cin >> a >> b >> c;

8 G.add_edge(a,b,c);

0 }

10 }

1 int main() {

12 Graph G(0);

13 read_graph_from_stdin (G);

14 in s, t; cin >> s >> t;

15 in res = G.edmonds_karp_max_flow(s,t);
16 cout << "max_ flow: " << res << endl;

7}
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Multiple sources/sinks: Undirected Graphs

Vertex Capacities Minimum Flow per Edge

;zgg > 1 [Exercise]
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Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?
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Flow Application: Edge Disjoint Paths
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Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

m Is this a flow problem? No.

m Can it be turned into a flow problem? Maybe.

m Build directed street graph by adding edges in both directions.

[

Set all capacities to 1.

Lemma

In a directed graph with unit capacities, the maximum number of edge-disjoint
s-t-paths is equal to the maximum flow from s to t.
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