SOl Workshop 2015
Network Flows

Daniel Graf

ETH Ziirich

November 8, 2015

Network Flow: Example

S

>[[{)

Network Flow: Example

t\wij source

>[[{)

Network Flow: Problem Statement

Input: A flow network consisting of Output: A flow function f : E — N such

m directed graph G = (V, E) that:

m all capacity constraints are satisfied:
Vu,ve V:0<f(u,v)<c(uv)
(no pipe is overflowed)

m source and sink s, t € V

m edge capacity c: E — N.

m flow is conserved at every vertex:
Vue V\ {s, t}:
Z(v,u)eE f(v,u) = Z(u,v)EE f(u,v)
(no vertex is leaking)

m the total flow is maximal:
|f| = ZVEV f(S, V) - ZVGV f(V, S) =
Zuev f(ua t) - Zuev f(t7 u)

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Take any s-t-path and increase the flow along it.
|

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Take any s-t-path and increase the flow along it.
m Update capacities and repeat as long as we can.

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Take any s-t-path and increase the flow along it.
m Update capacities and repeat as long as we can.

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Take any s-t-path and increase the flow along it.
m Update capacities and repeat as long as we can.

m Problem: We can get stuck at a local optimum.

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

m Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f|), O(nmmaxc) and O(nm?). [BGL-Doc].

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

m Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f|), O(nmmaxc) and O(nm?). [BGL-Doc].

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Network Flow Algorithms: Ford-Fulkerson and Edmonds-Karp

m Solution: Keep track of the flow and allow paths that reroute units of flow.
These are called augmenting paths in the residual network.

m Ford-Fulkerson: Repeatedly take any augmenting path: running time O(m|f|).

m Edmonds-Karp: Repeatedly take the shortest augmenting path:
running time: best of O(m|f|), O(nmmaxc) and O(nm?). [BGL-Doc].

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/edmonds_karp_max_flow.html

Edmonds-Karp Maximum Flow Algorithm

The headers and edge struct:

1 // Sample implementation of the Edmonds Karp Algorithm
2 // Daniel Graf, grafdan@ethz.ch, 7.11.2015
3 #include <iostream>

4 #include <vector>

5 #include <cassert>

6 #include <queue>

7

8 #define INF 1000000000

9 typedef long long int in;

10 using namespace std;

1

2 struct Edge {

-

13 in from, to, flow, cap, rev;
14 in residual_capacity () {

15 return cap—flow;

16 }

o}

18

Edmonds-Karp Maximum Flow Algorithm

Graph struct, add_edge function:

struct Graph {
in s, t;
vector<vector<Edge> > E; // adjacency-list of edges
vector<Edgex> P; // predecessor map for the BFS

Graph(in N) {
E = vector<vector<Edge> >(N);
}

void add_edge(in from, in to, in cap) {
if (from=—to) return;
E[from]. push_back({from ,to,0,cap,(in)E[to]. size ()
E[to]. push_back({to,from,0,0,(in)E[from].size()—1

© o N o 00~ W N =

P e
w N = O

});
})

-
'S

’

=
o1
——

[
o

Edmonds-Karp Maximum Flow Algorithm

Reset all flow values:

void reset_flow () {
for(in v=0; v<E.size (); v++) {
for(in e=0; e<E[v].size(); e++) {
E[v][e]. flow = 0;

© o N o O~ W N =

Edmonds-Karp Maximum Flow Algorithm

Can we find a path from s to t?

1 bool find_flow () {

2 P = vector<Edgex>(E.size () ,NULL);

3 // Breadth First Search through the edges with remaining capacity
4 queue<in> Q; Q.push(s);

5 while (!Q.empty () && P[t]==NULL) {

6 in v=Q.front(); Q.pop();

7 for(in e=0; e<E[v].size(); e++) {

8 if (E[v][e].residual_capacity()==0) {

9 continue;

10

1 in w=E[v][e].to;

12 lf(P[W]::NULL) {

13 Plw] = &(E[v][e]);
14 Q. push(w);

15 }

16 }
7 oo

Edmonds-Karp Maximum Flow Algorithm

How much can we fit through that path from s to t?

// Check if there is a path to t
if (P[t] = NULL) {

return O;
}

// Check the minimum capacity

in flow = INF;

in pos = t;

while(pos != s) {
flow = min(flow, P[pos]—>residual_capacity());
pos = P[pos]—>from;

© o N o O~ W N =

=R e
N = O

}

return flow;

-
w

-
'S
——

Edmonds-Karp Maximum Flow Algorithm

Increase the flow along the path and reduce the reverse edges.

1 void update_flow(in flow) {

2 in pos = t;

3 while(pos != s) {

4 // cout << "update at vertex " << pos << endl;
5 P[pos]—->flow += flow;

6 E[P[pos]—->to][P[pos]—>rev]. flow —= flow;

7 pos = P[pos]—>from;

8

9

}

Edmonds-Karp Maximum Flow Algorithm

Repeatedly search for the shortest augmenting path while one exists.

1 in edmonds_karp_max_flow(in _s, in _t) {
2 s = _s;

3 t = _t;

4 reset_flow ();

5 in flow = 0;

6 in new_flow;

7 do {

8 new_flow = find_flow ();

9 flow += new_flow;

10 if (new_flow > 0) {

11 update_flow (new_flow);
12 }

13 } while(new_flow > 0);

14 return flow ;

15 }

16 }; // end of the Graph struct

Edmonds-Karp Maximum Flow Algorithm

Read graph from input and call the algorithm.

1 void read_graph_from_stdin(Graph &G) {

2 in N,M;

3 cin >> N >> M;

4 G = Graph(N);

5 for(in m=0; m<M; mt+) {

6 in a,b,c;

7 cin >> a >> b >> c;

8 G.add_edge(a,b,c);

0 }

10 }

1 int main() {

12 Graph G(0);

13 read_graph_from_stdin (G);

14 in s, t; cin >> s >> t;

15 in res = G.edmonds_karp_max_flow(s,t);
16 cout << "max_ flow: " << res << endl;

7}

Multiple sources/sinks: Undirected Graphs

=

Vertex Capacities Minimum Flow per Edge

Multiple sources/sinks: Undirected Graphs

Vertex Capacities Minimum Flow per Edge

Multiple sources/sinks:

Vertex Capacities

Undirected Graphs

=

Minimum Flow per Edge

Multiple sources/sinks: Undirected Graphs
3/4
OO L
* 274
4

OWRO

4

Vertex Capacities Minimum Flow per Edge

Multiple sources/sinks: Undirected Graphs

Vertex Capacities Minimum Flow per Edge

Multiple sources/sinks: Undirected Graphs

Vertex Capacities Minimum Flow per Edge

HE A

Multiple sources/sinks: Undirected Graphs

Vertex Capacities Minimum Flow per Edge

;zgg > 1 [Exercise]
f ; :/({Q

0
=
)
(T
o
i)
=
o
‘0
a
(&)
a0
O
L
c
.9
=
(gv]
2
a
o
<
2
e
L

How many ways are there to get from HB to CAB without using the same street twice?

c £ 9
S E s
L5h 8
gtegz
o O
= 8L 30
P >
<
B %
& =
& Am\ F
«° % ﬂva.,wavw
Q="
3
wwa._m:wmm 2z %
29y el
. s 3
0 % z8% 5
% i LR
v c 22k)
- = &% <
5 3 8235
g & g2
uuewiny o £s
2
= %
® 5 1
a«.a% 3
3 @ @m.
%
® ®© =
™ !
% @ %%swwa
E R <
=\ Leonhardsha® A %
% -
E o
A < Auf der Mauer o o
R Zahringerstrasse
(1) 4, 4 :
assensbiaquiam ES g
5.
&) asse.
Ww% et © (H] ,.v. [0} :mtoP%m__
+ z
hstrasses
e -Quai = ¢
wﬁac _..aaﬁ
qua
Y- - ane’ ot o
qane PR kG ;
p :
h .] 4
2| ofqual Ienb,
Voot e . gahah oI
B | = O m—rp— .
%eoa%% R = - N
P\ /
) [/ ol g uwmmé._,,v
) ES k| P %
S B\
/i O 0% %
(Y | 2] S EORS N
¥ | e e\
§ LSS A0 S
w.n.q 4 «%‘ ® »
‘ d
r\% ® s,

y
&
: S
0 B
w S wqmmm
/ N 335,
\ Yurs

-
(O]
2
=)
4
[0}
e -
p— h | |
+ i o
s tE%
e 58z
£ o
9 gL 30
: L3 %
= o%,&r» .m»\
+ ? M
%
a0 ,\«w
-n @;
5
S ﬂvasavﬂp bt
..L m
3 @ i
s - |
3 T p%%% B £
= © o i |
: 20 E:
o5~ i
W 825 s
: Sct 3
m © 0»%,32% —
< # :
P o % |
@
) S S wm@ @ (po%a%, ww
(0 : |
e m A &
+ T D (O] <~ Auf Leonhardsha® ae%ma
uf der M: .an,o
: : @ ax i > 2%.%@%2 5
ﬁlv m xcnf@am:. 1 z |
- : Zihri %
ingerstt s
. hb ..n_l.w - wﬁacm@:_uwn:m:mmmmv ® : . M Z
) ;
eY0] | =
n u o iv,%nw:. =8 0 © i
(0] s} v 123%5,9,9 = r.%aﬁ,.o:m_ e 'l
o0 S) f
vl \rfmat a
5 2 ,, |
2
S b . n
..n_l.“ S%an%%n < muﬁ@% mw,\% - ‘ Mwe
= 5 B ey IS I
O A " ' ! i
= 2 7 sg,
(gv] @ ' .\ : 7 .
C W Q\\ .m.: z . ISSByY,
= z |
E > r.m : 7 « \
r 2
| / fo% S
- I B ‘ : m i
& | a.
o (S —5 \ y / = &, @
e %
=3 ‘ @ /
< B /it it ,
2 3 4] e
(@) T r \‘\ | |
@%9 955, i
¥ iy, |
2o
Ui~

0
=
)
(T
o
i)
=
o
‘0
a
(&)
a0
O
L
c
.9
=
(gv]
2
a
o
<
2
e
L

How many ways are there to get from HB to CAB without using the same street twice?

un

e

< Auf der Mauer

O]

¥

¢

7

o
Leonhardsha®

S £ 0
S E s
S5 8
ST ED W
o O
S 8F 30
&
>
Serio2;
s
w
g o
B ©
aET %
2wl5 -5
5= S
55 <
2%
BEg
<
2 4
%
X
,Oﬂa
ey
e NSRS b
WO et]
- 52
9
% ©0®
)
Zéhringerstrasse M

o
(2} 3SSeNS) 10
Pi3
=3 ® LET)
-Quai]
e (
at ..W_
y
s
- wuﬁ::oE:w_ - Ienbjoy,
v
assey
S
P %,
3 o %,
%
o) % %G
0% o
S ,
5 2,
N &)
89 %
® A
® 95sp, 05,0

3
355
B e,
< 24urn

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street twice?

o e +
Sy Zurey z
\J L = a
o S g
% i
= @ &l =
& ol
2, :
g
=
™ Bahnhofflatz e

T 5
it B, “
9asse @ Es ?‘. 1@
3 2 20
d
g hy & g
g ® 3
v N 5 +
E o [0 ©
& o
5 255
& S 2
g 4
E F =
3 g &
S
S L &
& 7
5 5 s
g & & 5
s & S 5
& ¥ = L4

g 5
5
£
S
O
%,
4 %
% %
% %,
ko o
K
@
o
Kol
N
Eidgenossische
Technische Hochschule!
Zdurich (ETH Zirich)
2
5
2
2
%
)
A

Map:
search.ch,
TomTom,

swisstopo,
OSM

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

m Is this a flow problem? No.

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?
m Is this a flow problem? No.

m Can it be turned into a flow problem? Maybe.

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

m Is this a flow problem? No.

m Can it be turned into a flow problem? Maybe.

m Build directed street graph by adding edges in both directions.

m Set all capacities to 1.

Flow Application: Edge Disjoint Paths

How many ways are there to get from HB to CAB without using the same street
twice?

m Is this a flow problem? No.

m Can it be turned into a flow problem? Maybe.

m Build directed street graph by adding edges in both directions.

[

Set all capacities to 1.

Lemma

In a directed graph with unit capacities, the maximum number of edge-disjoint
s-t-paths is equal to the maximum flow from s to t.

0
=
)
(T
o
i)
=
o
‘0
a
(&)
a0
O
L
c
.9
=
(gv]
2
a
o
<
2
e
L

TomTom,
swisstopo,
OSM

search.ch,

Map:

& o
2,
%
® (5
& %
5 Sy
& %
P
: o N T
e \
ﬂwa_m:w 22 -
] b
o £ nT o
© <! 253 c
o ez L\
> 3 cel 5
& 285 Iy
Isuuey s ZE8
) 23
@ — — =
%
2 (v %
9 %
® \ %
® . ~ 3
2 S5 —
% @ - >
9 %, e%wa
B W L . =
. —~ Leonhardsha W .;v %
¥ ® « Auf deTauer glo o’ b,
o OIO)
- = ahringerstrasse| 2
=)
O\ Oopste 3 Tl
o 300s! & & sstedd
% o it S (O} HOp13pa
acmm. e=] A i
s
- i\ . atQuai = !
& arestt .
st

() o
.
S

5 %,
- JE\e, %,
%

&m@@ % 2@
s.0% 4
5© x.w

@ \

@ 50

