
Wavelet Trees
Julian Steinmann

January 21, 2019

1 Concept
The idea behind a Wavelet Tree is to partition a sequence X into specific subsets and connect those

to form a tree-shaped structure. Thanks to the properties of these subsets we are then able to

answer various queries quickly. Our root node is the complete sequence X. As long as there are

distinct values in a node S, the sequence is split into two sets L (left child of S) and R (right child of

S). Denote the median value in S as m(S). All values below m(S) in S will go to L while the others

will go to R. The order of values is preserved, so when splitting for example N = {1, 4, 2, 3, 1}
the new nodes will be L = {1, 2, 1} and R = {4, 3}. This process is done recursively until a leaf is

reached. The set at the leaf contains per definition only one value (otherwise it’d be possible to

split the set again).

Figure 1: Wavelet Tree with the sequence X = {3, 3, 9, 1, 2, 1, 7, 6, 4, 8, 9, 4, 3, 7, 5, 9, 2, 7, 3, 5, 1, 3}

The alphabet of the tree is the set of all different values that the tree contains. It is assumed

that the size of the alphabet is σ. The tree has a depth of O(log σ), because the alphabet is split

into halves on every layer.

1

1.1 Construction
The construction of a Wavelet Tree is done recursively. For every node we first check if it is a leaf.

If not, we process the elements of the node for the traversal (see subsection 1.2). Afterwards all

elements are partitioned while preserving the order. Finally, the build function is called again

twice: once with the elements bigger than m(S) and once with the elements smaller than m(S).
The nodes of the tree are numbered from 1 to n such that the left child of node i is 2i and the

right child is 2i + 1.

Implementation

1 vector<vector<int>> C;
2 int size;
3

4 WaveletTree(vector<int>& S, int sigma) : C(sigma*2), size(sigma){
5 input = S;
6 build(S.begin(),S.end(), 0, size-1,1);
7 }
8

9 void build(iter begin, iter end, int left, int right, int node){
10 //-> leaf
11 if(left == right)
12 return;
13

14 int mid = left+(right-left)/2;
15

16 //here we will prepare the tree for the traversal, see next subsection
17

18 iter pivot = stable_partition(begin, end, [=](int i){return i <= mid;});
19

20 //call recursively for left and right side
21 build(begin,pivot,left,mid,node*2);
22 build(pivot,end,mid+1,right,node*2+1);
23 }

1.2 Traversal
The fundamental operation for traversing a Wavelet Tree is finding the indexes to which an index

in the parent node is mapped to. Let’s look at an example from Figure 1. The index 13 in the root

node (marked in red) gets mapped to the index 8 in the left child and between index 5 and 6 in the

right child. If a parent index is mapped between two child indexes, we will pick the first one (so

index 5 in this case). We can define the functions mapLeft(S,i) and mapRight(S,i) which take

a node S and an index i as an input and return the index in the left or right child respectively.

These are both elementary functions that will be used often, so it would be useful to be able to

compute them as quickly as possible. Luckily, it is possible to do this in constant time.

Algorithm For quickly calculating mapLeft and mapRight we use prefix sums. An array CS is
used, which will hold the amount of elements that go to the left child up until a certain index.

This is equivalent to checking if the element is bigger than m(S) or not. Whenever a new node

S is built, we iterate over all elements of the node and check whether they will end up in the

left or right child. If the element at index iwould end up in the left child, CS[i] = CS[i − 1] + 1.
Otherwise, CS[i] = CS[i − 1].
It is now possible to query mapLeftwith the help of CS. The number of elements that go the

left up until index i is CS[i] − 1 (because we start indexing from 0). Now mapRight can also be

2

computed, as the elements that go to the right are i − CS[i].

Running time Precomputing C with an original sequence of length N takes O(N log N) time,

because we iterate once over all elements of N in every layer & there are log N layers. We can

answer all mapLeft and mapRight queries in O(1).

Implementation

1 C[node].reserve(end-begin+1);
2 C[node].push_back(0);
3 //this is a prefixsum, which allows us to get the number of elements
4 //that go to the left or right in O(1)
5 for(iter it = begin; it != end; ++it)
6 C[node].push_back(C[node].back() + (*it<=mid));
7

8 //mapLeft(S,i) is now C[S][i]

2 Queries

2.1 Rank query
The rank operation counts the occurrences of a value x up until a certain index i. We can define

the rank operation to be equal to

rankx(S, i) = |{k ∈ {1, ..., x}|S[i] = x}|.

As an example, rank3(S, 14) = 3when taking the sequence from Figure 1.

Algorithm If x ≤ m(S) it is guaranteed that all occurrences of x in S appear in the left child of S.
In this case

rankx(S, i) = rankx(LeftChild(S), mapLeft(S, i))

Similarly, if x > m(S) then

rankx(S, i) = rankx(RightChild(S), mapRight(S, i))

This process can be applied recursively until a leaf is reached. If S is a leaf, rankx(S, i) = i.1

Notice that it is possible to compute the occurrences of a value x between two indexes i and j
through rankx(S, j) − rankx(S, i − 1).

Running time The running time of the rank operation is O(log σ), as we traverse the tree down

to a leaf and therefore call mapLeft or mapRight O(log σ) times. Computing the rank for a range

between two indexes i and j has the same running time.

Implementation

1 //Count occurences of x until position i
2 //occurences between i and j: rank(x,j) - rank(x,i)
3 int rank(int x, int i) const{
4 //open the interval on the left as it makes the processing easier
5 ++i;

1. Rodrigo González et al., “Practical implementation of rank and select queries,” 2005, 27–38.

3

6 int left = 0, right = size-1, node = 1, mid;
7 while(left != right){
8 mid = left+(right-left)/2;
9

10 if(x <= mid){
11 i = C[node][i]; right = mid; node = 2*node;
12 } else {
13 i -= C[node][i]; left = mid+1; node = 2*node+1;
14 }
15 }
16 return i;
17 }

2.2 Quantile query
quantilek(S, i, j) returns the k-th smallest element in the range [i, j]. Taking the sequence from

Figure 1 again, quantile6(S, 7, 16) = 7.

Algorithm For now, let i = 1, so an operation would look like quantilek(S, 1, j). This is a

simpler problem, as we are now only searching for the k-th smallest element up until the index

j.2 Assume that c = mapLeft(S, j). c is equal to the amount of elements that get mapped to the

left child L up until index j. It is therefore guaranteed that if k ≤ c, the element we are searching

for is in the left subtree, so

quantilek(S, 1, j) = quantilek(LeftChild(S), 1, mapLeft(S, j))

If k > c, the element is in the right subtree and quantile can be computed with

quantilek(S, 1, j) = quantilek−c(RightChild(S), 1, mapRight(S, j))

This process can again be repeated until we reach a leaf. The answer is then the value stored in

the leaf.

To generalize this process, we need to ignore all elements up until index i. In order to do this,

we set c = mapLeft(S, j) − mapLeft(S, i − 1). This means that c now only holds the number of

elements that get mapped to the left between i and j. We also need to map i to the left or right,

resulting in the following two equations:

quantilek(S, i, j) = quantilek(LeftChild(S), mapLeft(S, i − 1) + 1, mapLeft(S, j))

quantilek(S, i, j) = quantilek−c(RightChild(S), mapRight(S, i − 1) + 1, mapRight(S, j))

Running time The running time of the quantile operations is again O(log σ) and is only slightly

bigger than the rank operation.

Implementation

1 //Find the k-th smallest element in [i,j]
2 int quantile(int k, int i, int j){
3 int left = 0, right = size-1, node = 1, mid;
4 while(left != right){
5 mid = left+(right-left)/2;
6

2. Travis Gagie, Simon J. Puglisi, and Andrew Turpin, “Range Quantile Queries: Another Virtue of Wavelet Trees,”

arXiv: 0903.4726, arXiv:0903.4726 [cs] 5721 (2009): 1–6, accessed January 7, 2019, doi:10.1007/978-3-642-03784-9_1,
http://arxiv.org/abs/0903.4726.

4

http://dx.doi.org/10.1007/978-3-642-03784-9_1
http://arxiv.org/abs/0903.4726

7 if(k <= C[node][j]-C[node][i]){
8 i = C[node][i]; j = C[node][j]; right = mid; node = 2*node;
9 } else {

10 k -= C[node][j]-C[node][i]; i -= C[node][i]; j -= C[node][j]; left = mid+1; node = 2*node+1;
11 }
12 }
13 return right;
14 }

2.3 Range query
The range query returns the number of values that are between x and y and appear in the range

[i, j]3.

Algorithm The idea behind this algorithm can be visualized by displaying all entries in the

sequence X in a grid, where the x-axis is the index and the y-axis the actual value. We are now

looking for the amount of points within a rectangle that starts at (i, x) and ends at (j, y).

Figure 2: Illustration of the idea behind the range query algorithm

If we now consider an interval [i, j] wherewewant to search for the number of values betweeen

x and y, there are three possible options:

• The interval does not intersect [x, y]. The returned value is therefore zero.

• The interval is completely contained in [x, y]. The returned value is |[i, j]|= j − i + 1
because all elements are included.

• The interval is partially contained in [x, y]. Now, the returned value is the sum of the range

query of both children. We therefore need to call range with the same x and y, but i and j
should be mapped to the children’s indexes:

(1)rangex,y(S, i, j) = rangex,y(LeftChild(S), mapLeft(S, i), mapRight(S, j))

+rangex,y(RightChild(S), mapRight(S, i), mapRight(S, j))

3. Gonzalo Navarro, “Wavelet Trees for All,” https://users.dcc.uchile.cl/~gnavarro/ps/cpm12.pdf.

5

https://users.dcc.uchile.cl/~gnavarro/ps/cpm12.pdf

These cases also apply when called on a leaf, so no additional code is necessary.

Running time It can be shown that the range operation runs in O(log σ).
4
The constant factors

for this operation are higher than the ones for the range and quantile queries, but it is still
possible to call range 106 times in one second if the alphabet has size 105.

Implementation

1 int originalLeft, originalRight;
2 //Count number of values in range [a,b] between positions [i,j]
3 int range(int i, int j, int a, int b){
4 //empty range
5 if(i > j || a > b){
6 return 0;
7 }
8 originalLeft = i; originalRight = j;
9 return range(i,j+1,0,size-1,1);

10 }
11

12 int range(int i, int j, int a, int b, int node){
13 //ranges do not intersect
14 if(originalLeft > b || originalRight < a){
15 return 0;
16 }
17 //completely contained
18 if(originalLeft <= a && b <= originalRight){
19 return j-i;
20 }
21 //partially contained, call recursively
22 int mid = (a+b)/2, mapLeft = C[node][i], mapRight = C[node][j];
23 return range(mapLeft,mapRight,a,mid,node*2) +
24 range(i-mapLeft,j-mapRight,mid+1,b,node*2+1);
25 }

3 Update queries
This document will only discuss two basic update queries. Please refer to Castro et al.

5
for more

advanced update queries such as toggling elements.

3.1 Adding and deleting elements at the end of the sequence
The operations will be named identically to their array counterpart: pushBack(S,x) appends
the element x at the end of the sequence X while popBack(S) removes the last element in the

sequence.

Algorithm It is possible that performing these operations will alter the alphabet of the sequence

X. To circumvent this problem, we will simply allow empty leafs and additionally build the tree

with a size big enough to be able to contain any element xwithin the limits of the problem we

4. Travis Gagie, Gonzalo Navarro, and Simon J. Puglisi, “New Algorithms on Wavelet Trees and Applications

to Information Retrieval,” arXiv: 1011.4532, arXiv:1011.4532 [cs], November 2010, accessed January 4, 2019, http:
//arxiv.org/abs/1011.4532.

5. Robinson Castro et al., “Wavelet Trees for Competitive Programming,” Olympiads in Informatics 10, no. 1 (July 2016):

19–37, issn: 18227732, 23358955, accessed January 4, 2019, doi:10.15388/ioi.2016.02, http://www.ioinformatics.
org/oi/pdf/v10_2016_19_37.pdf.

6

http://arxiv.org/abs/1011.4532
http://arxiv.org/abs/1011.4532
http://dx.doi.org/10.15388/ioi.2016.02
http://www.ioinformatics.org/oi/pdf/v10_2016_19_37.pdf
http://www.ioinformatics.org/oi/pdf/v10_2016_19_37.pdf

are solving. pushBack(S,x) needs to do two things: First, actually add the element x to the end

of the sequence X. Second, we must add new entries in C such that it is possible to map the new

index down through the tree.

If x <= m(S), it follows that mapLeft(S, i) = mapLeft(S, i−1) +1. This automatically also means

that mapRight(S, i) = mapRight(S, i − 1).
Ifx > m(S), weknow thatmapLeft(S, i) = mapLeft(S, i−1) andmapRight(S, i) = mapRight(S, i−

1) + 1.
This process is now repeated recursively until we reach a leaf. For popBack(S), a similar

approach can be used. Instead of adding new elements to C, we simply pop the last element and

traverse down the tree until a leaf is reached.

Running time Both pushBack(S,i) and popBack(S) run in O(log σ) time - we traverse down

the tree with height log σ and delete/add a new element, which can be done in amortized

constant time.

Implementation

1 void pushBack(int x){
2 input.push_back(x);
3 int left = 0, right = size-1, node = 1, mid;
4 while(left != right){
5 mid = left+(right-left)/2;
6

7 C[node].push_back(C[node].back() + (x<=mid));
8 if(x <= mid){
9 right = mid;

10 } else {
11 left = mid+1;
12 }
13 node = 2 * node + (x > mid);
14 }
15 }
16 void popBack(){
17 int x = input.back();
18 input.pop_back();
19 int left = 0, right = size-1, node = 1, mid;
20 while(left != right){
21 mid = left+(right-left)/2;
22

23 C[node].pop_back();
24 if(x <= mid){
25 right = mid;
26 } else {
27 left = mid+1;
28 }
29 node = 2 * node + (x > mid);
30 }
31 }

References
Castro, Robinson, Nico Lehmann, Bernardo Subercaseaux, and Jorge Perez. “Wavelet Trees

for Competitive Programming.” Olympiads in Informatics 10, no. 1 (July 2016): 19–37. issn:

18227732, 23358955, accessed January 4, 2019. doi:10.15388/ioi.2016.02. http://www.
ioinformatics.org/oi/pdf/v10_2016_19_37.pdf.

7

http://dx.doi.org/10.15388/ioi.2016.02
http://www.ioinformatics.org/oi/pdf/v10_2016_19_37.pdf
http://www.ioinformatics.org/oi/pdf/v10_2016_19_37.pdf

Gagie, Travis, Gonzalo Navarro, and Simon J. Puglisi. “New Algorithms on Wavelet Trees and

Applications to Information Retrieval.” ArXiv: 1011.4532, arXiv:1011.4532 [cs], November

2010. Accessed January 4, 2019. http://arxiv.org/abs/1011.4532.

Gagie, Travis, Simon J. Puglisi, and Andrew Turpin. “Range Quantile Queries: Another Virtue of

Wavelet Trees.” ArXiv: 0903.4726, arXiv:0903.4726 [cs] 5721 (2009): 1–6. Accessed January 7,

2019. doi:10.1007/978-3-642-03784-9_1. http://arxiv.org/abs/0903.4726.

González, Rodrigo, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. “Practical imple-

mentation of rank and select queries,” 2005, 27–38.

Navarro, Gonzalo. “Wavelet Trees for All.” https://users.dcc.uchile.cl/~gnavarro/ps/
cpm12.pdf.

8

http://arxiv.org/abs/1011.4532
http://dx.doi.org/10.1007/978-3-642-03784-9_1
http://arxiv.org/abs/0903.4726
https://users.dcc.uchile.cl/~gnavarro/ps/cpm12.pdf
https://users.dcc.uchile.cl/~gnavarro/ps/cpm12.pdf

	Concept
	Construction
	Traversal

	Queries
	Rank query
	Quantile query
	Range query

	Update queries
	Adding and deleting elements at the end of the sequence

