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Abstract Modelling

A graph G consists of

1. a set V of vertices

2. a set E of edges

3. (a weight function w)

• Vertices are called v0, v1, v2, . . .

• Graphs are either weighted or unweighted

• Graphs are either undirected or directed

• Graphs are either connected or unconnected
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Abstract Modelling
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Which graphs are used depends on what we want to model

For simple arguments, we mostly assume connected graphs

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 4 / 35



Abstract Modelling

v0

v1

v2v3
v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which graphs are used depends on what we want to model

For simple arguments, we mostly assume connected graphs

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 4 / 35



Abstract Modelling

v0

v1

v2v3
v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which graphs are used depends on what we want to model

For simple arguments, we mostly assume connected graphs

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 4 / 35



Abstract Modelling

v0

v1

v2v3
v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which graphs are used depends on what we want to model

For simple arguments, we mostly assume connected graphs

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 4 / 35



Abstract Modelling

v0

v1

v2v3
v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which graphs are used depends on what we want to model

For simple arguments, we mostly assume connected graphs

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 4 / 35



Abstract Modelling

v0

v1

v2v3
v4

v5

Undirected unweighted graph

v0

v1

v2v3

v4

1

2

1

4

2

Undirected weighted graph

v0

v1 v2

v3 v4

Directed unweighted graph

Which graphs are used depends on what we want to model

For simple arguments, we mostly assume connected graphs

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 4 / 35



On the Computer
Graphs



Adj. Matrices: Undirected Weighted Graph
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Adj. Matrices: Directed Unweighted Graph
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Adj. Lists: Directed Unweighted Graph
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Adj. Matrices and Lists in C++

Use 2-dimensional vector of ints

Matrix: Weighted

vector<vector<int>>
G { {0, 1, 7, 2, 0, 5},

{1, 0, 0, 0, 0, 0},
{7, 0, 0, 0, 8, 0},
{2, 0, 0, 0, 0, 5},
{0, 0, 8, 0, 0, 2},
{5, 0, 0, 5, 2, 0} };

Matrix: Unweighted

vector<vector<int>>
G { {0, 1, 1, 0, 0, 0},

{1, 0, 1, 1, 0, 1},
{1, 1, 0, 0, 1, 0},
{0, 1, 0, 0, 1, 1},
{0, 0, 1, 1, 0, 0},
{0, 1, 0, 1, 0, 0} };

List: Unweighted

(We prefer those)

vector<vector<int>> G
{{1,2},{0,2,3,5},{0,1,4},{1,4,5},{2,3},{1,3}};
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Stacks
For iterative DFS



Stacks

• Last-In First-Out

• stack<int> creates stack of integers

• push(x) “pushes” x into end

• top() returns last element

• pop() “pops” out last element

stack<int> numbers;
numbers.push(0);
numbers.push(4);
numbers.push(7);
cout << numbers.top() << "\n";
numbers.pop();
cout << numbers.top() << "\n";
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Depth-First Search
in undirected graphs



DFS with a Stack
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Output:
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DFS with a Stack

void dfs() {
stack<int> vertices;
vertices.push(0);
int current, v;
while (vertices.size() > 0) {

current = vertices.top();
vertices.pop();
if (!visited[current]) {

visited[current] = true;
cout << current << ” ”;
for (int i=G[current].size()-1; i>=0; --i) {

v = G[current][i];
vertices.push(v);

}
}

}
}
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Depth-First Search
in undirected graphs recursively



Recursive DFS

• Again start at root and mark it as visited

• Recursively call algorithm on non-visited neighbors

vector<vector<int>> G {{1,2},{2},{0}};
vector<int> visited(G.size(),false);

void dfs(int current) {
if (!visited[current]) {

visited[current] = true;
cout << current << ” ”;
for (int i=0; i<G[current].size(); ++i) {

int v = G[current][i];
dfs(v);

}
}

}
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Recursive DFS
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DFS Tree
of an undirected graph



DFS Tree
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Finding Cycles
in undirected graphs



Finding Cycles

v0
(root)

v1

v2

v3v4

v5

v6

• DFS supplies all we need

• Traverse graph as before

• Find edge connecting current vertex to one already visited?

ï Back edge

• Careful though: A single edge is not a cycle
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Finding Cycles

vector<vector<int>>
G { {2,4,5},

{2,3,5},
{0,1,3,4,5},
{1,2},
{0,2,6},
{0,1,2},
{4} };

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 16 / 35



Finding Cycles

Extend DFS to keep track of parent vertex

void cyclefind(int current, int parent) {
if (!visited[current]) {

cout << current << ” ”;
visited[current] = true;
for (int i=0; i<G[current].size(); ++i) {

int v = G[current][i];
if (v != parent) {

if (visited[v]) {
cout << "CYCLE";

} else {
cyclefind(v,current);

}
}

}
}

}
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Other Applications
DFS in undirected graphs



Other Applications

Is graph connected?

• DFS from arbitrary vertex

• Are all vertices visited when done?

Is vertex w reachable from vertex v?

• DFS from v

• Is w visited when done?

Is connected graph 2-colorable?

• DFS from arbitrary vertex v

• Neighbors of v get color different from that of v , and so on

• Check for collisions via back edges
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Finding Cycles
in directed graphs



Finding Cycles

• Same DFS strategy as before also works for directed graphs

• But what about finding cycles?

v0
(root)

v1

v2

v3v4

v5

v6

• This is not a cycle

• But our algorithm would identify it as one
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Finding Cycles

Instead of just marking whether a vertex is visited or not, keep
track of whether it is on our current path

With this, a vertex has three states

• unvisited

(marked white)

• active

(marked gray)

• visited

(marked black)

This allows us to detect cycles in directed graphs
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Finding Cycles

v0
(root)
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v3

v4

v5
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Finding Cycles

v0
(root)

v0
(root)

v1v1

v2v2

v3v3

v4v4

v5

Cycle

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 21 / 35



Finding Cycles

v0
(root)

v0
(root)

v1v1

v2v2

v3v3

v4v4

v5

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 21 / 35



Finding Cycles

v0
(root)

v0
(root)

v1v1

v2v2

v3v3

v4v4

v5

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 21 / 35



Finding Cycles

v0
(root)

v0
(root)

v1v1

v2v2

v3v3

v4v4

v5

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 21 / 35



Finding Cycles

v0
(root)

v0
(root)

v1v1

v2v2

v3v3

v4v4

v5v5

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 21 / 35



Finding Cycles

v0
(root)

v0
(root)

v1v1

v2v2

v3v3

v4v4

v5v5

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 21 / 35



Finding Cycles

v0
(root)

v0
(root)

v1v1

v2v2

v3v3

v4v4

v5v5

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 21 / 35



Finding Cycles

v0
(root)

v0
(root)

v1v1

v2v2

v3v3

v4v4

v5v5

Graph Theory and DFS – Dennis Komm February 12, 2018 – Ftan SOI 2018 21 / 35



Finding Cycles

Edge from v to w can be classified at time it is considered

• Tree edges. edges that belong to DFS tree (w has color white)

• Forward edges. v is ancestor of w (w has color black)

• Back edges. w is ancestor of v (w has color gray)

• Cross edges. Neither ancestor of other (w has color black)

Graph has cycle if and only if there is a back edge

Undirected graph has only tree and back edges
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Finding Cycles

vector<vector<int>>
G { {1,2},

{2,3,5},
{},
{2,4},
{1},
{} };
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Finding Cycles

void cyclefind_dir(int current) {
cout << current << ” ”;
state[current] = 1;
for (int i=0; i<G[current].size(); ++i) {

int v = G[current][i];
if (state[v] == 0) {

cyclefind_dir(v);
} else if (state[v] == 1) {

cout << "BACK EDGE";
}

}
state[current] = 2;

}
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Topological Sorting

• Consider directed acyclic graph (DAG)

• Arcs define partial ordering

• Arc from v to w means v > w

v0
(root)

v1

v2

v3

v4

v5

v2 < v4 < v3 < v5 < v1 < v0
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Topological Sorting

vector<vector<int>>
G { {1,2},

{2,3,5},
{},
{2,4},
{},
{} };
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Topological Sorting

• Use DFS

• After recursive call, all “smaller” vertices have been visited

• Then push current to back of stack

void toposort(int current) {
state[current] = 1;
for (int i=0; i<G[current].size(); ++i) {

int v = G[current][i];
if (state[v] == 0) {

toposort(v);
}

}
state[current] = 2;
topo.push_back(current);

}
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Cheese Patrol

• Surveillance of Tokyo

• Detectives can be placed on streets and intersections
• When on intersection, detectives surveils two streets

v0 v1

v0 v1

Surveil complete town with minimum number of detectives
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Cheese Patrol

What is the best anyone can do?

• Graph G contains ` connected components, say G1, . . . , G`

• Detective can never watch streets from different components

• G1 has n1 vertices and m1 edges and so on

• So consider G1

Suppose m1 is even

• It is impossible to use less than m1/2 detectives. . .

• because one detective can watch at most two edges

Suppose m1 is odd

• Then we need (m1 + 1)/2 detectives

• m1/2 = dm1/2e for m1 even

• (m1 + 1)/2 = dm1/2e for m1 odd
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Cheese Patrol

Observations

• It is never superior to place detective at street

• It can always be moved to intersection

ï This does not make solution worse

• No street needs to be watched by two detectives

Consequences

• Only place detectives at intersections

• Have each detective watch two streets

• In each component, there may be one exception
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Cheese Patrol

Assume graph is a tree

Careful about leaves

v3

v4

v2 v1 v0
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Cheese Patrol
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Cheese Patrol

v0

v1 v2 v3

v4 v5 v6 v7 v8

No detective here

Result: 8 edges, 4 detectives
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Cheese Patrol

When we are done with a subtree

• We used an optimal number of detectives

• If subtree has even number of edges, half as many detectives

• If odd number of edges, one det. has capacity for one edge

ï Used to watch edge to parent

• Unless parent is root
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Cheese Patrol

Now assume graph is arbitrary

Somewhat the same problem
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Cheese Patrol

Now assume graph is arbitrary

Use DFS to avoid this problem

v3

v4

v2 v1 v0

Compute DFS tree
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Cheese Patrol

Now assume graph is arbitrary

Use DFS to avoid this problem

v3

v4

v2 v1 v0

Treat graph as tree
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Now assume graph is arbitrary

Use DFS to avoid this problem

v3

v4

v2 v1 v0

v4 is leaf in DFS tree
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Now assume graph is arbitrary

Use DFS to avoid this problem

v3

v4

v2 v1 v0

v4 is “real” leaf
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Use DFS to avoid this problem
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Now assume graph is arbitrary

Use DFS to avoid this problem
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Thanks for the attention


