
DP

Dynamic programming

Stefanie Zbinden

2018-12-02

Swiss Olympiad in Informatics



DP

Don’t calculate again what you already calculated before.

1



Repetition - Fibonacci



Repetition - Fibonacci

Task: Given a number n, we want to compute the nth Fibonacci

number, where the nth Fibonacci number is defined as

fn =


0 if n = 0

1 if n = 1

fn−1 + fn−2 otherwise

2



Repetition - Fibonacci

Solution: This is an easy recursion, thus we can calculate the

number via a recursive function

int f (int n) {

if (n<=1) return n;

return f(n-1)+f(n-2);

}

3



Repetition - Fibonacci

Solution 2: We calculate f (n − 2) multiple times. Instead of

calculating it over and over again, we apply DP and store the value

vector <int > fibonacci;

int f (int n){

if (fibonacci[n]!= -1) return fibonacci[n];

if (n<=1) return fibonacci[n]=n;

return fibonacci[n]=f(n-1)+f(n-2);

}

int main(){

int n;

cin >> n;

fibonacci=vector <int > (n+1, -1);

cout << f(n) << "\n";

}

4



Repetition - Fibonacci

Improvement: Our first solution needed exponential time, by

saving the values of f (n), once calculated, we managed to derive a

solution which is only linear time.

Memoization: Using a recursive function to implement the DP is

called memoization.

5



DP examples



Trisum

Task: Given a triangle with numbers in it. Calculate the sum of

the maximal path from the bottom to the top. In each step, one

can only go down to the left or to the right.

Example:

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

6



Trisum

Observation 1: The optimal path from the bottom to the top is

either the optimal path from the bottom to the left of the top and

then to the top or the optimal path from the bottom to the right

of the top and then to the top.

Observation 2: We are not really interested in the path, only in

finding the maximum value.

Observation 3: The same two observations don’t only hold for

the top but for any number in the triangle.

7



Trisum

Our observations lead to the following recursion:

maxsum[i][j]=max(maxsum[i+1][j+1], maxsum[i+1][j])

+ a[i][j]

8



Trisum- Bottom Up Solution

vector <vector <int > > maxsum (n, vector <int > (n));

for (int j=0; j<n; j++){ //Init the bottom line

maxsum[n-1][j]=a[n-1][j];

}

for (int i=n-1; i>=0; i--){

for (int j=0; j<=i; j++){

maxsum[i][j]=max(maxsum[i+1][j],

maxsum[i+1][j+1])+a[i][j];

}

}

cout << maxsum [0][0] << ’\n’;

9



Renovate

Task: Stofl wants to renovate a building front consisting of a n

times m grid. If a cell is damaged, Stofl can either fix it or tear it

out and place a window. However, each window has to have a non

window column on it’s left and right. Find out, how many windows

Stofl can build.

10



Renovate

Example:

11



Renovate

Recursion:

//a[i] is the number of damaged cells in column i

wind[i]=wall[i-1]+a[i];

wall[i]=max(wind[i-1], wall[i-1]);

12



Renovate

// house: vector that has a 1, if the cell is fine

// and a 0 if it is damaged

vector <int > a (n);

for (int i=0; i<n; i++){

for (int j=0; j<m; j++){

a[i]+= house[i][j];

}

}

vector <int > wall (n);

vector <int > window (n);

for (int i=1; i<n; i++){

wall[i]=max(wind[i-1], wall[i-1]);

wind[i]=a[i]+wall[i-1];

}

cout << wall[n-1] << ’\n’;

13



Remarks

Important things you should remember:

• Don’t calculate things multiple times

• Try to find the optimal solutions for a subproblem in order to

calculate the whole solution.

• Analyse the problem and it’s properties: What assumptions

can we make about the optimal solution? Which statements

are true for any solution?

• First think, then code!

14


	Repetition - Fibonacci
	DP examples 

