
Binary Search

Ftan Camp 2018
February 15, 2018

Binary Search

// Input: [0,0,....,0,1,....,1,1]
// Output: Index of last 0, or -1 if there is none
int search(vector<int> const& a) {
// Invariant: l==-1 or a[l]=0
int l=-1, r=a.size();
while (r - l > 1) {
int m = l + (r - l)/2;
if (a[m] == 0)

l = m;
else

r = m;
}
return l;

} 1

Binary Search

Implicit representation of array with predicates.

P(x) ∧ (x < y) =⇒ P(y)

Example: Find index of value x in array a0, ...,an−1

P(i) = (a[i] > x)
P(−1) = 0

2

Binary Search

Implicit representation of array with predicates.

P(x) ∧ (x < y) =⇒ P(y)

Example: Find index of value x in array a0, ...,an−1

P(i) = (a[i] > x)
P(−1) = 0

2

Sentinels

Make sure that the list starts with 0 and ends with 1.

Add −∞ to the front and ∞ to the end to avoid any problems.

3

Example 1

N employees
K filing cabinets that contain a0...,ak−1 documents
Assign employee i to consecutive cabinets li, ..., ri
All cabinets need to be covered by exactly one employee
Minimize maxi{ali + ali+1 + · · ·+ ari−1}

4

Example 3: Take Away

Reduction to a simpler problem using binary search:

What is the minimum cost?
=⇒

Can it be done with cost x?

5

Example 2

Simple skewness of a collection of numbers: mean−median.

Given a list of n integers (not necessarily distinct), find the
non-empty subsequence with the maximum simple skewness.

6

Search on Convex Function

0 10 20 30 40

500

600

700

800

packages

co
st

[Y
en

]

7

Search on Convex Function

• Binary search on derivative
• Ternary search (if you can’t compute the derivative)

8

Example 3

Given a sequence of n integers a1,a2, ...,an.

Determine a real number x such that the weakness of the
sequence a1 − x,a2 − x, . . . ,an − x is as small as possible.

Weakness: maximum value of the poorness over all segments
(contiguous subsequences) of a sequence.

Poorness of a segment: absolute value of the sum of the
elements of segment.

Your answer will be considered correct if its relative or
absolute error doesn’t exceed 10−6

9

Example 3: Take Away

// Input: [0,0,....,0,1,....,1,1]
// Output: Index of last 0
int search(double l, double r, double EPS) {
// Invariant: a[l]=0
while (r-l > EPS) {
double m = (l + r)/2;
if (pred(m))

l = m;
else

r = m;
}
return l;

}
10

Running Time Analysis

How many operations?

O(log((r− l)/e))

11

Running Time Analysis

How many operations?

O(log((r− l)/e))

11

About Errors

x: Solution
x̃: Approximation of x

Absolute error (difference to solution?):

|x− x̃|

Relative error (percentage of error?):

|x− x̃|
|x| =

∣∣∣∣ x̃x − 1
∣∣∣∣

12

About Errors

def IsApproximatelyEqual(x, y, epsilon=1e-6):
Check absolute precision.
if -epsilon <= x - y <= epsilon:
return True

Is x or y too close to zero?
if (-epsilon <= x <= epsilon or

-epsilon <= y <= epsilon):
return False

Check relative precision.
return (-epsilon <= (x - y) / x <= epsilon or

-epsilon <= (x - y) / y <= epsilon)
13

Binary Search on Logarithm

Intuitive idea: Faster convergence for binary search on
exponent

After some math:

m =
√
lr = e 1

2 (log(l)+log(r))

Some pointer:
http://codeforces.com/blog/entry/49189

14

http://codeforces.com/blog/entry/49189

Binary Search on Double Representation

Doubles are discrete. They can be casted to 64 bit integers.

Find the best double to approximate a problem: Binary
search!

15

Binary Search on Double Representation

int search(double l, double r) {
for (;;) {
uint64_t l_bits = *(uint64_t*)(&l);
uint64_t r_bits = *(uint64_t*)(&r);
if (r_bits - l_bits <= 1)

return l;
uint64_t m_bits = l_bits+((r_bits-l_bits)>>1);
double m = *(double*)(&m_bits);
if (pred(m))

l = m;
else

r = m;
}

} 16

More on errors

Minimize absolute and relative error?

• Minimize absolute if x < 1.
• Minimize relative if x > 1.

Absolute error:
|x− x̃|

Relative error:
|x− x̃|
|x| =

∣∣∣∣ x̃x − 1
∣∣∣∣

17

How to find the best EPS

Needs to be larger than in task description because of
rounding errors.

Can’t be too large because the code will be too slow.

Hack: Fixed number of iterations!

18

No Upper Bound

Sometimes, there is no upper bound or you want your
solution to be in O(log(ans)).

int r = 1;
while (!pred(r))
r *= 2;

return search(l, r);

19

Binary Search Tree

Can visualize binary search as a tree.

We look for the value that minimizes (Pred(x),−x).

Branch and Bound: Define LB and UB => exactly the same as
binary search.

20

