# Graphs

#### **TYPES AND PROPERTIES**

#### Mathematical description

- Tuple of two sets: G = (V, E)
  - Vertices/Nodes
  - Edges
  - Number of Edges: |E|
  - Number of Nodes: |V|
- Adjacent Nodes: Neighbours



### **Connected Components**

No connected Graph:



### k-connectivity

- One can pick any k-1 Nodes, remove them and the graph stays connected.
- Mengers Theorem: this is equivalent to that for any two Nodes there are at least k paths connecting them that share only the start and end node.



## Cycles



## Isomorphism

= equal structure



## **Types**

• simple graph:



• multigraph:



# Weighted graph



### Special structures

- Complete graph: Every node is connected to every other node
- Bipartite Graph: The nodes can be divided into two groups such that no edge connects nodes from the same group:





### Degree of a vertex

- deg(v) = # edges connected to v
- k-regular graph: Every node has degree k



## Repetition: Multiple Choice



|                     | А      | В      | С      | D      | E      |
|---------------------|--------|--------|--------|--------|--------|
| contains a cycle    | no     | yes    | no     | yes    | yes    |
| k-connected         | 2      | 2      | 2      | 1      | 1      |
| multi-/single graph | single | single | multi  | single | single |
| weighted            | no     | no     | yes    | no     | no     |
| complete            | yes    | no     | yes    | no     | no     |
| bipartite           | yes    | yes    | no     | yes    | no     |
| k-regular           | yes, 2 | no     | yes, 1 | no     | no     |

#### THEOREMS ABOUT GRAPHS

#### **Theorems**

- A simple graph has O(V^2) edges
  - precisely: At most |V| (|V|-1)/2
- A simple Graph that has |V| or more edges always has a cycle.
- The sum of the degrees of all nodes is 2 | E |
- The number of nodes with odd degree is even
- The average of the degrees of all nodes is
  2|E|/|V|

### Hamilton cycle

It is a cycle in a graph that traverses all nodes



 It is NP-Hard to find out if a graph contains a hamilton cycle

## Eulerian cycle

• It is a cycle that traverses all edges



### Eulerian cycle

- It is a cycle that traverses all edges
- It only exists if the degree of all all nodes is even
- An eulerian path exists if there are exactly two nodes with odd degree

#### **IMPLEMENTIERUNGEN**

## Adjazenzmatrix

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 2 | 0 | 1 | 0 | 0 | 0 |
| 3 | 1 | 1 | 0 | 0 | 0 |
| 4 | 0 | 1 | 0 | 0 | 0 |

|   | 0  | 1  | 2  | 3  | 4  |
|---|----|----|----|----|----|
| 0 | -1 | 3  | -1 | 7  | -1 |
| 1 | 3  | -1 | 0  | 42 | 5  |
| 2 | -1 | 0  | -1 | -1 | -1 |
| 3 | 7  | 42 | -1 | -1 | -1 |
| 4 | -1 | 5  | -1 | -1 | -1 |





## Adjazenzliste



## Vergleich Adjazenzliste/matrix

|                                | Adjazenzliste | Adjazenzmatrix |
|--------------------------------|---------------|----------------|
| Speicherplatz                  | V+E           | V <sup>2</sup> |
| Kante einfügen                 | 1             | 1              |
| Kante löschen                  | E             | 1              |
| Existiert Kante?               | E             | 1              |
| Finde alle Kanten eines Knoten | E             | V              |
| Traversieren                   | V+E           | $V^2$          |

#### **DIGRAPHEN & TOPOSORT**

### **Directed Graph**



DAG = acyclic directed graph

### Strong and weak connectivity

- strongly connected if there is a directed path between any two vertices
- weakly connected if the corresponding undirected graph is connected



#### Degree, Source and sink

- Indegree and Outdegree of a node
- Source: Indegree = 0, Sink: Outdegree = 0



Every DAG has a source and a sink.

## Schedueling

