You have an Art History exam approaching, but you have been paying more attention to informatics at school than to your art classes! You will need to write a program to take the exam for you.

The exam will consist of several paintings. Each painting is an example of one of four distinctive styles, numbered 1, 2, 3 and 4.

Style 1 contains neoplastic modern art. For example:

Style 2 contains impressionist landscapes. For example:

Style 3 contains expressionist action paintings. For example:

Style 4 contains colour field paintings. For example:

What is an image?

Not a little square!

Gaussian reconstruction filter

Illustrations: Smith, MS Tech Memo 6, Jul 17, 1995

Capturing photons

<u>From: Lecture Notes – EAAE</u> and/or Science "Nuggets" 2000

Blooming

- The buckets have finite capacity
- Photosite saturation causes blooming

Quantization

Quantization

Geometric resolution

144x144

72x72

36x36

Radiometric resolution

by Adrian Pingstone, based on the original created by Edward H. Adelson

by Adrian Pingstone, based on the original created by Edward H. Adelson

Pixel Neighborhoods

Convolution

(e.g. point spread function)

Linear Filtering (warm-up)

Original

Slide credit: D.A. Forsyth

?

Linear Filtering (warm-up)

Original

Filtered (no change)

Slide credit: D.A. Forsyth

Original

(use convolution)

19 Slide credit: D.A. Forsyth

?

Original

(use convolution)

Shifted left By 1 pixel

ETH

20 Slide credit: D.A. Forsyth

Original

?

Original

Original

Slide credit: D.A. Forsyth

?

Original

Blur (with a box filter)

Slide credit: D.A. Forsyth

Original

(Note that filter sums to 1)

Slide credit: D.A. Forsyth

/

1 9	1	1	1
	1	1	1
	1	1	1

Original

Sharpening filter - Accentuates differences with local

average

Slide credit: D.A. Forsyth

Sharpening

before

after

Slide credit: D.A. Forsyth

Smoothing with a Gaussian

Smoothing with a box filter

Scale Space Example

11x11; *σ* =3.

High-pass filters

Laplacian operator:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

High-pass filter:

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

High-pass filters

Laplacian

Prewitt operator example

Original Bridge 220x160

magnitude of image filtered with

$$\begin{pmatrix} -1 & 0 & 1 \\ -1 & [0] & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

magnitude of image filtered with

$$\begin{pmatrix} -1 & -1 & -1 \\ 0 & [0] & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Prewitt operator example (cont.)

Original *Billsface* 310x241

log magnitude of image filtered with

 $\begin{bmatrix} -1 & 0 & 1 \\ -1 & [0] & 1 \end{bmatrix}$ 0

log magnitude of image filtered with

$$\begin{pmatrix} -1 & -1 & -1 \\ 0 & [0] & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Prewitt operator example (cont.)

log sum of squared horizontal and vertical gradients

> different thresholds

Viola-Jones cascade face detection

• Very efficient face detection using integral images

Fourier basis functions

You have an Art History exam approaching, but you have been paying more attention to informatics at school than to your art classes! You will need to write a program to take the exam for you.

The exam will consist of several paintings. Each painting is an example of one of four distinctive styles, numbered 1, 2, 3 and 4.

Style 1 contains neoplastic modern art. For example:

Style 2 contains impressionist landscapes. For example:

Style 3 contains expressionist action paintings. For example:

Style 4 contains colour field paintings. For example:

Style 1 contains neoplastic modern art. For example:

Style 2 contains impressionist landscapes. For example:

Style 3 contains expressionist action paintings. For example:

Image pyramid

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

512 256 128 64 32 16 8

512 256 128 64 32 16 8

Computer Graphics FS 2013

Hao Aiqiang

Henrik Wann Jensen

Teaser - Light Transport

Digital shapes are pervasive

Games/Movies

Engineering/Product design

Architecture

Polygonal Meshes

- Boundary representations of objects
 - Piecewise linear
 - Store: geometry and connectivity (topology)

Polygonal Meshes

Polygonal Mesh

- A finite set M of closed, simple polygons Q_i is a *polygonal mesh*
 - The intersection of two polygons in *M* is either empty, a vertex, or an edge

$$M = \langle V, E, F \rangle$$

$$\checkmark$$
vertices edges faces

Halfedge data structure

- Introduce orientation into data structure
 - Oriented edges
- Vertex
 - Position
 - 1 outgoing halfedge index
- Halfedge
 - 1 origin vertex index
 - 1 incident face index
 - 3 next, prev, twin halfedge indices
- Face
 - 1 adjacent halfedge index
- Easy traversal, full connectivity

Triangle Meshes

carring the Davia

- 480 individually aimed scans
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 22 people

canning the David

Computer Graphics Ray Tracing I

Dr. Oliver Wang

owang@disneyresearch.com

Ray Tracing - Overview

Forward Ray Tracing

Ray Tracing - Overview

Ray Generation

Rays

Parametric form

Ray-Sphere Intersection

• Sphere equation (implicit)

- Algebraic approach:
 - insert ray equation:

$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$

- and solve for *t* $\|\mathbf{o} + t\mathbf{d} - \mathbf{c}\|^2 - r^2 = 0$

Visual Break

Computer Graphics Shading

Direct Illumination

Direct + Indirect Illumination

Shading

• Simple shading model

Diffuse Shading

Specular Refraction

Specular Refraction

Snell's law

Total Internal Reflection

Tomatoes

Simulating Highlights

- Problem: Point light sources
- Solution: Blurry reflection of light source
- Phong model

distribution of specular reflection

Specular Highlights

- Phong model
 - "shininess" parameter

Computer Graphics Ray Tracing II Acceleration Structures

Dr. Oliver Wang

owang@disneyresearch.com

Some images borrowed from $\ensuremath{\mathsf{Pharr}}$ and $\ensuremath{\mathsf{Humphreys}}$

Physically Based Rendering 2010

Eidgenössische Technische Hochschule Zürich

Spatial Hierarchies

- Classical divide-and-conquer approach
- Several variations

Comparison

KD-Tree

• Worst case scenario?

Participating Media (Fog)

Caustics Are Pretty

Advanced Effects

Subsurface Scattering

Henrik Jensen UC San Diego