
Introduction
Computability theory

Complexity theory

Computability and Computational Complexity

Jan Hązła

ETH Zürich

February 11, 2014

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Introduction

So we get a computational problem. What can we do with it?
Find a fast algorithm → IOI
Prove there is no fast algorithm → Complexity theory
Prove there is no algorithm at all → Computability theory

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Outline

1 Introduction

2 Computability theory

3 Complexity theory

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Introduction

We need a formal setting:
Pick your favourite programming language.
Program and data can always be converted to a string of bits.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Introduction – problems

But what is a problem, anyway? Examples:
Given integer, decide if it is prime or composite (PRIMES).
Given simple graph, decide if it has a cycle that visits every
vertex exactly once (HAMILTON-CYCLE).
Given simple graph, decide if it has a cycle that visits every
edge exactly once (EULER-CYCLE).
Given program A and input x , decide if A(x) stops or runs
forever (HALTING).

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Introduction – problems

Further examples:
Given set of integers and another integer k, decide if it has
non-empty subset with total sum k (SUBSET-SUM).
Given simple graph and k, decide if there is a set of k vertices
that “touches” all edges (VERTEX-COVER).
Given n tasks that take time t1, . . . , tn and a deadline T ,
decide if you can divide them between two processors such
that processing is finished before the deadline
(JOB-SCHEDULING).
Given polynomial with integer coefficients p(x1, . . . , xn),
decide if there exist integer coordinates z1, . . . , zn such that
p(z1, . . . , zn) = 0 (POLY-INT-ZERO).

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Introduction – problems
To sum up:

We are interested in decision problems, with input and
“yes”/“no” answer.
There is usually a natural notion of input size (useful later).
Worst-case analysis: we want programs that are correct on
every input.

Exercise
Q: What about non-decision problems?

A: Handled by standard tricks. For example, take
VERTEX-COVER. How to compute size of smallest VC if we can
decide if there exists VC of size k? How to compute smallest VC if
we can compute size of smallest VC?

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Amazing fact: there are problems for which no algorithm exists!

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Halting problem

Given program A and input x , decide if A(x) stops or runs forever
(HALTING).

For sure we can run A(x) and see if it stops. . .
But how long do we wait?
Maybe if the program loops we can detect it. . . But have you
ever heard of busy beavers?

For some nasty programs runs forever is a better phrase than loops
forever.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Proof of undecidability

Proof by contradiction! Assume there exists program B that solves
halting problem on every input.

Remember that both programs and inputs are just strings of bits.
We can make an (infinite) list of them all:
ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .

Assuming this order we can interpret this list as enumeration of all
possible programs A1,A2, . . . or of all possible inputs x1, x2, . . .

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Proof of undecidability

With that in mind we write the following program:

C(x_i) {
if (B(A_i, x_i)) {

run forever;
} else {

stop;
}

}

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Proof of undecidability

Let us make a huge (infinite) 2D table. Rows are inputs, columns
are programs. In row xi and column Aj we put 1 if Aj(xi) stops,
and 0 otherwise:

A1 A2 A3 A4 · · ·
x1 1 0 1 1 · · ·
x2 1 0 1 0 · · ·
x3 1 1 1 1 · · ·
x4 1 0 1 0 · · ·

· · ·

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Proof of undecidability

Let us make a huge (infinite) 2D table. Rows are inputs, columns
are programs. In row xi column Aj we put 1 if Aj(xi) stops, and 0
otherwise:

A1 A2 A3 A4 · · · C A1 A2 A3 A4 · · ·
x1 1 0 1 1 · · · x1 1/0 0 1 1 · · ·
x2 1 0 1 0 · · · x2 1 0/1 1 0 · · ·
x3 1 1 1 1 · · · x3 1 1 1/0 1 · · ·
x4 1 0 1 0 · · · x4 1 0 1 0/1 · · ·

· · · · · ·
C cannot be any of A1,A2, . . .! Therefore, C cannot exist.
Therefore, B cannot exist.

This is called the diagonal method.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Some comments

This sounds like cheating, right?

Exercise
We just showed that every program fails to solve HALTING on at
least one input. Show that every program fails to solve HALTING
on infinite number of inputs.

Fact
Q: One more of example programs is undecidable. Which one? A:
POLY-INT-ZERO

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Preliminaries

To prove there is no fast algorithm for a problem, we need to
define “fast” first.

Assign size n to every input.
In principle size should be a number of bits used to describe
the input, but it is ok if it is another (polynomially related)
notion.
Worst-case analysis: maximum running time of the algorithm
over all inputs of size n.
O()-notation: constant factors and low-order terms ignored:
100n2 + 10n = O(n2).

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Running times

Assume you have an algorithm that runs in time t for inputs of size
n.

Good: polynomial time, e.g., O(n2) — to compute input of
size 2n in time t you need four times faster machine.
Bad: exponential time, e.g.: O(3n) — to compute input of
size n + 1 in time t you need three times faster machine.
Polynomial time is nc = 2c log n. Exponential time is
cn = 2(log c)n. There is a lot of functions “in between”, e.g.,
nlog n = 2log2 n, 2

√
n, etc. They are also “bad”.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Running times

Problem
Q: What about runtimes 1020 · n, or 10−3 · (1.000001)n?

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

P vs. NP

P is a class of all problems that have algorithms that run in O(nc)
for some c. For example, PRIMES has an algorithm running in
O(n6), hence it is in P.

Another very important class is called NP. These are problems
that are “easy-to-verify”.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Definition of NP

The inputs for each problem can be divided into “yes”-instances
and “no”-instances.

A problem is in NP if there exists an efficient (polynomial-time)
way of verifying instances, such that:

For each “yes”-instance there exists some proof.
For each “no”-instance there is no proof.

What is a “proof”? A bitstring. How do you verify it? By a
program that takes proof as additional input.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Definition of NP – example

Given simple graph, decide if it has a cycle that visits every vertex
exactly once (Hamilton cycle).

A proof is a cycle in the graph and we verify it by checking if it is a
Hamilton cycle.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Definition of NP – example

Given set of integers and another integer k, decide if it has
non-empty subset with total sum k (subset sum).

A proof is a subset and we verify it by checking if its sum is k.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Definition of NP – exercises

Exercise
Is primality testing in NP?
Show that P ⊆ NP.
Is halting problem in NP?

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

P vs. NP

Problem
Are P and NP equal? Good question.

But why is the answer important?

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

NP-completeness

So far we do not have high hopes for proving either P = NP or
P 6= NP.

But we can prove this: there exists a huge range (hundreds) of
problems that are “NP-complete”.

If P = NP, all those problems are in P.
If P 6= NP, all of them are outside P.

In particular, Hamilton cycle, subset sum, vertex cover and job
scheduling are all NP-complete.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Proving NP-completeness

How do you prove NP-completeness for a problem L?
First, show L ∈ NP. That way P = NP =⇒ L ∈ P.
Second, take some problem L′ that you already know is
NP-complete and show that L ∈ P =⇒ L′ ∈ P (in a sense
you show that L′ is not harder than L).

Problem
Q: But you need to start with the first NP-complete problem?
How do you get it?
A: Well. . . somehow. It is called Cook’s theorem.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Proving NP-completeness – example

Example. Recall:
Given simple graph and k, decide if there is a set of k vertices
that “touches” all edges (VERTEX-COVER).
Given set of integers and another integer k, decide if it has
non-empty subset with total sum k (SUBSET-SUM).

Assume we know that VERTEX-COVER is NP-complete. How to
show that SUBSET-SUM is NP-complete?

Does SUBSET-SUM ∈ NP? Yes!

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Proving NP-completeness – reductions

To show: SUBSET-SUM ∈ P =⇒ VERTEX-COVER ∈ P.

How to prove this step? Using a reduction.

Assume you have a program A that puts SUBSET-SUM in P.
Write a program (reduction) that will call A as subprocedure and
(efficiently) solve VERTEX-COVER.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Reduction VERTEX-COVER ≤p SUBSET-SUM

Given G with n vertices and m edges and 0 ≤ k < n the reduction
constructs SUBSET-SUM instance as follows:

There are n+m numbers, each of them with m+1 digits in base n.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Reduction VERTEX-COVER ≤p SUBSET-SUM

For each vertex u we construct number su:

d0 d1 d2 · · · de · · · dm
su 1 0 1 · · · 1 · · · 0

where d0 is always 1 and de = 1 if and only if u is one of the
endpoints of e.

For each edge e we construct number te :

d0 d1 d2 · · · de · · · dm
te 0 0 0 · · · 1 · · · 0

with a single 1 at digit e.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Reduction VERTEX-COVER ≤p SUBSET-SUM

In total, we want:

+ d0 d1 d2 · · · de · · · dm
· · ·

su 1 0 1 · · · 1 · · · 0
· · ·

te 0 0 0 · · · 1 · · · 0
· · ·

k ′ = k 2 2 · · · 2 · · · 2

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Reduction VERTEX-COVER ≤p SUBSET-SUM

We (efficiently) constructed a SUBSET-SUM instance from
VERTEX-COVER instance.

If we prove:
“yes”-instance of VERTEX-COVER is always mapped to
“yes”-instance of SUBSET-SUM.
“no”-instance of VERTEX-COVER is always mapped to
“no”-instance of SUBSET-SUM,

we are done! We can solve VERTEX-COVER by mapping it to
SUBSET-SUM and returning whatever SUBSET-SUM algorithm
returns.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

Exercise
Prove mapping property from the previous slide.

Congratulations! You proved a problem NP-complete. There is a
whole theory of various smart (“gadget”) reductions like that.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

P vs. NP – some consequences

1 If P = NP:
Huge progress in solving problems.
“Creativity” not significantly harder than “verifying”.
Almost all cryptography used in practice is broken.

2 If P 6= NP:
Cryptography is provably safe.
Randomized algorithms do not give significant speedup.

Both bullet points require stronger assumptions than P 6= NP.

Jan Hązła Computability and Computational Complexity



Introduction
Computability theory

Complexity theory

What else?

Oracles, circuits, randomized algorithms, space complexity,
approximation algorithms, interactive proofs, quantum algorithms,
cryptography, communication complexity, natural proofs. . .

THANKS!

Jan Hązła Computability and Computational Complexity


	Introduction
	Computability theory
	Complexity theory

