Randomized
Algorithms

Hafsteinn Einarsson
CADMO - ETH Zurich

Randomized algorithms

Las Vegas: Always returns ‘failed’ or correct answer.

Monte Carlo: Can return a wrong answer but with
small probability.

p =QF

p)=(—T)(x—3)(z—1)(z+2)(2x + 5)
g(z) =22° —13z* — 212° + 127 2% + 121 = — 210

Multiplying out factors of p(x) can be done in O(d?)
(where d is the degree of the polynomial and we
assume integer multiplication is in constant time).
Evaluating p(x) requires only O(d) operations.

Can we compare if p(x) = g(x) in O(d) time?

|s your solution Monte Carlo or Las Vegas”

Given a number n,
Now can we determine
f it's prime”

Simple intuitive solution:
Try all relevant divisors

bool is prime(int n) {

)))i

if (n < 2) return false;
if (n < 4) return true;
if (n % || n $ 3 == 0) return false;
if (n < 25) return true;
int s = static cast<int>(sqrt(static cast<double>(n
for (int 1 = 5; 1 <= s; 1 += 6)
if (n % i || n $ (i + 2) == 0) return false;

return true; }

This implementation uses the fact that all primes are either
of the form 6k+1 or 6k-1 for some integer k (except for 2 and 3).

Runtime? O(Vn)

Other ways?

Wilson’'s theorem

o 1s prime if and only it
(p-1)! = -1 (mod p)

Theoretically practical
not computationally

HOwW can we be
faster than O(y/n)?

Miller Rabin
Primality lest

Theorem (Miller, Rabin)

It pis a prime, let s be the maximal power of 2
dividing p-1, so that p-1=25d and dis odd. Then
for any 1< n < p-1, one of two things happen:

n =1 mod p or
n?d = -1 mod p for some 0<j<s.

But if p is not prime then for any 1< n < p-1 the
conditions fails with probability at least 3/4.

| et's try

n=91 n-1=90 =245
Pick a number between 1 and 90 (exclusive)
Ok, so you picked 84

Now, 844> = 70 (mod 91) = 1
and 8424 = 77 (mod 91) = -1

S0o 84 is a witness that 91 is composite

What are the prime factors of 917

| et's try again

n=91 n-1=90 =245
Pick a number between 1 and 90 (exclusive)
Ok, so you picked 53:

Now, 53%° = 1 (mod 91)
and 5324 =1 (mod 91) = -1
S0 53 is an example of a strong liar
But fortunately there are not many strong liars

250

200

150

100

Number of strong liars

50

Number of strong liars

e e Strong liars

y = X/4

28

341

703

946

Theorem (Miller, Rabin)

It pis a prime, let s be the maximal power of 2
dividing p-1, so that p-1=25d and dis odd. Then
for any 1< n < p-1, one of two things happen:

n =1 mod p or
n?d = -1 mod p for some 0<j<s.

But if p is not prime then for any 1< n < p-1 the
conditions fails with probability at least 3/4.

Proof

First, if
x*=1 mod p
then
(x—1(x+1)=0 mod p.
Now by Fermat's little theorem
@ '=1 mod p.
By taking a square root repeatedly we ei-

ther end up with a? = | or at some point we

2'd —

have a — | and we're done.

import random

def decompose (n) :
exponentOfTwo = 0

while n % 2 == 0:
n = n/2
exponentOfTwo += 1

return exponentOfTwo, n

def isWitness (possibleWitness, p, exponent, remainder): :%LJrWtirT]Ea C)f quillear_

possibleWitness = pow (possibleWitness, remainder, p)

if possibleWitness == 1 or possibleWitness == p - 1: :%Eik)|r1

o with k repetitions?

for in range (exponent) :

possibleWitness = pow(possibleWitness, 2, p)

if possibleWitness == p - 1:
return False

return True Naive O(klOg(n)S)

def probablyPrime (p, accuracy=100) :

if p == 2 or p == 3: return True With FFT multiplication: O(k:log(n)?)

if p < 2: return False

exponent, remainder = decompose(p - 1)
for 1in range (accuracy) :
possibleWitness = random.randint (2, p - 2)

if isWitness (possibleWitness, p, exponent, remainder) :
return False

return True

For efficiency

It has been verified that

« if n< 1,373,653, it is enough to test 2 and 3;

i n< 9,080,191, it is enough to test 31 and 73;

- if n<4,759,123,141, it is enough to test 2, 7, and 61;

« if n<1,122,004,669,633, it is enough to test 2, 13, 23, and 1662803;
- if n<2,152,302,898,747, it is enough to test 2, 3, 5, 7, and 11;

» it n<3,474,749,660,383, it is enough to test 2, 3, 5, 7, 11, and 13;

- iIf n<341,550,071,728,321, it is enough to test 2, 3, 5, 7, 11, 13, and 17.

S0 that’s it for Miller
Rabin, questions”

Er
L "ORoDw AT

s &".} ERED MITHRI

(now @ debatable and
desert lond)

Smallest enclosing
circle problem

Unique solution
defined by 2 or
3 points.

Naive method: O(n?)
How?

Welzl's Algorithm

Algorithm MINIDISC(P)

Input. A set P of n points in the plane.
Output. The smallest enclosing disc for P.

1. Compute a random permutation py,... ,p, of P.

2. Let D; be the smallest enclosing disc for {py,p2}.

3. fori<3ton

4. doif p; € D;_

5 then D; « D;_

6 else D; < MINIDISCWITHPOINT({p1,...,pPi-1},Pi)
7. return D,

MINIDISCWITHPOINT(P, g)
Input. A set P of n points in the plane, and a point g such that there exists an

enclosing disc for P with g on its boundary.
Output. The smallest enclosing disc for P with g on its boundary.

1. Compute a random permutation py,...,p, of P.

2. Let D; be the smallest disc with% and p; on its boundary.

3. forj«2ton :

4. dOifijDj_l

5. then Dj — Dj._|

6. else D; < MINIDISCWITH2POINTS({p1,...,Pj-1},P},q)
7. return D, '

More efficient: Use the old permutation

MINIDISCWITH2POINTS(P,q1,492)

Input. A set P of n points in the plane, and two points g; and g, such that there
exists an enclosing disc for P with g; and g, on its boundary.

Output. The smallest enclosing disc for P with g; and g, on its boundary.

1. Let Dg be the smallest disc with g, and g, on its boundary.

2. fork« 1ton

3. doif p; € Dy,

4. then Dy <+ Dy

5 else D, «the disc with g1, g>, and p; on its boundary

6. returnD,

Algorithm MINIDISC(P)
Input. A set P of n points in the plane.
Output. The smallest enclosing disc for P.

1. Compute a random permutation p,,... , p, of P.

2. Let D, be the smallest enclosing disc for {py, p2}.

3. fori<3ton

4, do if pi € Di—1

5. then D; + D;_,

6. else D; < MINIDISCWITHPOINT({ p1,...,pi-1},Pi)
7. return D,

MINIDISCWITHPOINT(P, q)

Input. A set P of n points in the plane, and a point g such that there exists an
enclosing disc for P with g on its boundary.

Output. The smallest enclosing disc for P with g on its boundary.

1. Compute a random permutation py,... ,p, of P.

2. Let D) be the smallest disc with g and p; on its boundary.

3. forj«2ton

4. doif p; € D;_,

5 then Dj = Dj_|

6 else D; < MINIDISCWITH2POINTS({p1,...,pj-1},Pj»q)
7. return D,

MINIDISCWITH2POINTS(P,q1,42)

Input. A set P of n points in the plane, and two points g; and g such that there
exists an enclosing disc for P with g; and g on its boundary.

Output. The smallest enclosing disc for P with g and g7 on its boundary.

1. Let Dg be the smallest disc with g; and g, on its boundary.

2. fork+1ton

3 do if p, € Dy_,

4. then Dy < Dy,

5 else D; «the disc with g1, g2, and py on its boundary
6. returnD,

Expected runtime”?
O(n)

Algorithm MINIDISC(P)
Input. A set P of n points in the plane.
QOutput. The smallest enclosing disc for P.

1. Compute a random permutation py,... , p, of P.

2. Let D, be the smallest enclosing disc for {py, p2}.

3. fori+3ton

4, doif p; € D;_;

5 then D; < D;_;
6 else D; < MINIDISCWITHPOINT({p1,...,pi-1},p:) B’
7. return D, "

MINIDISCWITHPOINT(P, q)

Input. A set P of n points in the plane, and a point g such that there exists an

enclosing disc for P with g on its boundary.

Output. The smallest enclosing disc for P with ¢ on its boundary.

M

Input. A set P of n points in the plane, and two points g; and g, such that there

1
2
3.
-+
5
6
7

Compute a random permutation py, ..., p, of P.
Let D; be the smallest disc with g and p; on its boundary.
for j«2ton
do if pj€Dj_
then Dj «— Dj._|

return D,

INIDISCWITH2POINTS(P,q1,92)

exists an enclosing disc for P with g; and g; on its boundary.

Output. The smallest enclosing disc for P with g and g, on its boundary.

1
2
3.
4.
5
6

Let Dy be the smallest disc with g and g; on its boundary.
fork« 1ton
doif p; € Dy
then Dy < Dy
else D; «the disc with g1, g2, and p on its boundary
return D,

else D; <~ MINIDISCWITH2POINTS({p1,...,pj-1},Pj»q)

The probability of needing

another function call in
/ iteration iis only O(1/i).

So if you can show that
MiniDiscWithPoint runs In
expected time O(n) you
are done.

This algorithm can be
further optimized by
moving vertices on the
circle to the beginning of
the permutation.

Questions regarding
Welzl's algorithm?

How do you partition the vertices of a

graph into two non-empty subsets S

and T such that the number of edges
between S and T is minimized”

Karger's algorithm

Starting from the input graph G = (V, E), repeat the following process until only two vertices remain:

1. Choose an edge € = (u,v) uniformly at random from FE.

2. Set G = G/e.

rgvigrgrard-ardr3-3 442433

rgrgrirQr@rfrgrgrguiab- 3 SEY
iipregirirubu i 3R E R E S AN
SRREBALADD NI/
SORGIILEREC LI
v drrdrardrdrS 443 933
igregri > PP L EL PP
JUBELLL4444 0 vy
BB SR EE NN RAA
R RRRADONAL4431/
L XS TS VIV,

What's the probabillity
of success?

Given any min cut (S, T) of a graph G on

n vertices, Karger's algorithm outputs (S, T)

with probability at least (5) -

Given any min cut (S, T) of a graph G on
n vertices, Karger's algorithm outputs (S, T)

with probability at least (}) -

Since there are 2"~! — | cuts in every
graph (why?) the algorithm is much more ef-
ficient than selecting a cut at random which

)

has success probability at most 5.=7— (why?).

Given any min cut (S, T) of a graph G on
n vertices, Karger's algorithm outputs (S, T)

with probability at least (5) -

Let's assume the min cut (S, T) has k edges.

Then the minimum degree of the graph is

at least k (why?) and thus |E| > nk/2.
k k 2

— < —
E| — nk/2 n
Now an edge from the cut is not chosen
with probability at least

(I =k/IE[) = (1 =2/n).

Now if p, is the probability that the algo-
rithm avoids the cut in an n vertex graph then
it satisfies the recurrence p, > (I — %) Dn—|
with p; = |, let's expand:

n—3 0
MZH<InH>
= /n—i-2
:H(n—.I)

Now the algorithm is successful with prob-

g — | :
ability at least () , how many times should
we repeat it!

We want a low failure probability. Let's
assume that we repeat it T times, then the
probability of failure is at most

What's the runtime”

Doing an edge contraction can require O(n) operations for
an adjacency list or an adjacency matrix leading to a total
running time of O(n2). So here’s another way to see it:

EEEEEYs

What algorithm does this
remind you of"

Now using Kruskal and random edge weights we can
run the algorithm in O(|E|log|£]). But we still need at
least O(n?logn) repetitions leading to a total running
time of O(n*logn?). Can we do better?

Karger Stein

Improved algorithm: From a multigraph G, if G has at least 6 vertices, repeat twice:

1. run the original algorithm down to n/v/2 + 1 vertices.

2. recurse on the resulting graph.

For a specific minimum cut (S, T) denote
by pn.: the probability that the algorithm has
not ruined (S, T) after t edge contractions.

Like before we can solve p, . > (;)/(5) which

for t = n/v/2 + | is the point where it be-
comes less than | /2.

The running time now satisfies
T(n) = 2T(n/V2) 4+ O(n*) = O(n*logn)

and the success probability satisfies

=1 (1 o) —a (L),

logn

Now since the success probability is {) (@) we

can simply repeat the algorithm c- (log n)? times to get

a success probability of at least | — #

Thank you for your
attention!
Questions?

