
Task cake_protection_agency

Cake Protection Agency

Subtask 1: Latest Starting Time

We can compute the times (t1 � T, t2 , . . . , tk−1 , tcake) at which mouse Gehr arrives at
each of the vertices (v1 � vgehr , v2 , . . . , vk−1 , vk � vcake) by summing up the weights
along the edges that mouse Gehr travels along on his path. The CPA agent can prevent
the evil plot if it either reaches one of the vertices (v1 � vgehr , v2 , . . . , vk−1) at time
(t1 � T, t2 , . . . tk−1) or if it reaches the final vertex at time tk − 1. Hence the resulting last
possible leaving time for the CPA agent is the maximum of maxk∈{1,...,k−1}(tk − d(vcpa , vk))
and tk − 1 − d(vcpa , vcake). To compute this result, it is actually enough to only consider
tk−1 and tk , because we could imagine the agent moving along a shortest path to
vk−1 simultaneously with mouse Gehr catching him only there. (This establishes
that tk − d(vcpa , vk) ≥ maxk∈{1,...,k−2}(tk − d(vcpa , vk)).) The result is then given by
max(tk−1 − d(vcpa , vk), tk − 1 − d(vcpa , vcake))
We use Dĳkstra’s Algorithm to compute the distance of vcpa to all other nodes in the

graph. The running time and the additional memory usage are dominated by Dĳkstra’s
algorithm and are therefore given by O(|V | log |V | + |E |) and O(|V |) respectively.1

1 struct Edge {
2 int to;
3 int weight;
4 };
5 struct Node {
6 vector<Edge> out;
7 };
8 int sub1(const vector<Node> &G, int v_cpa, int v_gehr, int v_cake,
9 const vector<int> &p, int T) {

10 int t_i = T, t_cake = T;
11 for (int i = 1; i < (int)p.size(); i++) {
12 t = t_cake;
13 for (Edge &e : G[p[i - 1]]) {
14 if (e.to == p[i]) {
15 t_cake += e.weight;
16 break;
17 }
18 }
19 }
20 vector<int> distances = dijkstra(G, v_cpa);
21 return max(t - distances[p.size() - 1], t_cake - 1 - distances[v_cake]);
22 }

1Note that the implementation of Dĳkstra usually used in practice has a larger asymptotic running time:
O((|V | + |E |) log |V |).

1/6

Swiss Olympiad in Informatics

Round 2 Theoretical

Subtask 2: Plenty of Agents
As we have an unlimited supply of agents, the course of action that limits mouse Gehr
the most, after they have been dispatched, is to send one agent to each vertex, as quickly
as possible. Mouse Gehr can then only reach those vertices that the agents are not able
to reach before him (or possibly at the same time, with the exception of vcake).
Further note that without loss of generality, mouse Gehr will always travel along a

shortest path. To see why this is the case, note that it is always better for mouse Gehr to
be at a given vertex earlier rather than later. This immediately excludes the possibility
that mouse Gehr might move around in cycles. Assume that mouse Gehr successfully
moved from vertex vgehr to vertex w along some (simple) path p that is not a shortest path.
Now consider some shortest path q from vertex vgehr to vertex w. As by assumption,
p , q, there are vertices that are in q but not in p. The only reason why mouse Gehr
might need to avoid those vertices and take a longer path instead is because the CPA can
reach a vertex x among them at least as early as mouse Gehr. However, this immediately
implies that the CPA will reach the vertex w strictly earlier than mouse Gehr (the CPA
can just move along a shortest path from vertex x to vertex w). Therefore, it will catch
him even if w � vcake, which means that mouse Gehr cannot gain anything by moving
along a path that is not a shortest path.
We can compute for each vertex v, at which time tv the agents would need to be

dispatched to prevent mouse Gehr from entering this vertex, by subtracting the time it
takes the CPA agents to reach the vertex from mouse Gehr’s earliest possible arrival time
at this vertex (for v � vcake, we additionally subtract 1). The correct result will be tv for
one of the vertices v. (Note that tv can be∞ if v is not reachable by mouse Gehr and −∞
if it is reachable by mouse Gehr but not by the CPA agents.)
Observe that if the agents are dispatched at a certain time that allows them to still

catch mouse Gehr, they are either able to reach the cake strictly before mouse Gehr, or
they will be able to block all vertices surrounding the cake at or before the time that
mouse Gehr can reach any of them. (Because if they can catch mouse Gehr earlier than
at the surrounding vertices, they could also block the surrounding vertices in time by
moving there on shortest paths.)

Let Γ−(v) denote the set of vertices from which v can be reached by following a single
edge in E. The final result is max(tcake ,minv∈Γ−(vcake) tv). (The agents can choose to either
block the cake or the vertices surrounding the cake, and they will choose the option that
allows them to be dispatched later.)

1 int sub2(const vector<Node> &G, int v_cpa, int v_gehr, int v_cake, int T) {
2 vector<int> d_cpa = dijkstra(G, v_cpa);
3 vector<int> d_gehr = dijkstra(G, v_gehr);
4 vector<int> t(G.size()), gamma;
5 for (int i = 0; i < (int)G.size(); i++) {
6 t[v] = T + d_gehr[i] - d_cpa[i] - (i == v_cake);
7 for (Edge &e : G[i]) {
8 if (e.to == v_cake) {
9 gamma.push_back(i);

2/6

Task cake_protection_agency

10 break;
11 }
12 }
13 }
14 int worst = INFINITY;
15 for (int v : gamma) {
16 worst = min(worst, t[v]);
17 }
18 return max(t[v_cake], worst);
19 }

(In this implementation, the vectors t and gamma could be elided by performing
the necessary computations inline. This implementation was chosen to keep a close
correspondence to the solution text.)

Subtask 3: One Agent
We can again assume without loss of generality that mouse Gehr moves on a shortest
path towards vcake. Additionally, we can observe that this is true also for the CPA agent:
If the agent manages to catch mouse Gehr while not on a shortest path towards the
cake, the agent can alternatively choose to reach vcake strictly before mouse Gehr, while
being dispatched at the same time. Furthermore, we can assume that if the agent catches
mouse Gehr somewhere on the way, the agent moves onto the same field at precisely the
same time. (Otherwise, the agent could alternatively just move to the cake instead of
waiting until mouse Gehr arrives and, again, reach the cake strictly before mouse Gehr.)

There are now two cases to consider:

1. The agent catches mouse Gehr by moving to vcake at a strictly earlier time.
2. The agent catches mouse Gehr somewhere on the way, by moving to the same

vertex at the same time.

For case 1, the latest possible time T′cake to dispatch the agent is easy to compute. The
final result is either T′cake or T′cake + 1. For case 2, the agent catches mouse Gehr before
he reaches the cake. We will now need to compute which one it is. It suffices to check
whether the agent can catch mouse Gehr by moving onto the same vertex simultaneously.

We compute the distance of each vertex to the cake by running Dĳkstra’s algorithm
once, starting at the cake (moving backwards along directed edges).

Let E′ ⊆ E denote all edges that are on a shortest path to the cake. (Those are precisely
the edges that connect two vertices whose difference in distance to the cake corresponds
precisely to the weight of the edge.)

We can then view the situation as a game: The game state consists of the two vertices
vg and va denoting the current vertex of mouse Gehr and the agent respectively. Note
that the agent and mouse Gehr might be “out-of-sync”, i.e. the two vertices of the agent
and mouse Gehr might be at different distances from the cake. We will allow the agent to
move if the agent is currently at a distance from the cake that is larger than the distance
of mouse Gehr to the cake, otherwise mouse Gehr moves. (This in particular means

3/6

Swiss Olympiad in Informatics

Round 2 Theoretical

that mouse Gehr moves first if both the agent and mouse Gehr are currently at the same
distance to the cake. This corresponds to the constraint that mouse Gehr moves first if he
and the agent need to make a simultaneous decision.) Both mouse Gehr and the agent
only move along edges in E′.

A position is a winning position for the agent if and only if the agent can catch mouse
Gehr starting from this position by moving onto the same square, unless mouse Gehr
reaches the cake first.

We can set up the following recurrence describing the winning positions for the agent:

• If mouse Gehr reaches the cake, the agent loses.
• If the agent is at least as close to the cake as mouse Gehr, the current position
(vg , va) is a winning position for the agent if and only if all positions (vg , v′a) that
mouse Gehr can reach by moving along an edge from E′ are winning positions for
the agent.

• If mouse Gehr is closer to the cake than the agent, the current position (vg , va) is a
winning position for the agent if and only if the agent can reach a winning position
(v′g , va) by moving along an edge from E′.

More formally: Let d(v , vcake) be the distance from vertex v to the cake. We denote by
win(vg , va) � 1 the fact that from the initial position (vg , va), the agent can catch mouse
Gehr by moving to the same square at the same time.
Let Γ′+(v) ⊆ V denote the set of all vertices reachable from vertex v by following a

single edge from E′.2

win(vg , va) � 0, for vg � vcake ,

win(vg , va) � 1, for vg , vcake and vg � va ,

win(vg , va) �
∧

v′g∈Γ′+(vg)
win(v′g , va), for vg , vcake , vg , va and d(va , vcake) ≤ d(vg , vcake),

win(vg , va) �
∨

v′a∈Γ′+(va)
win(vg , v′a), for vg , vcake , vg , va and d(vg , vcake) < d(va , vcake).

Because there are no cycles in the graph G′ � (V, E′), we can evaluate the above
recurrence using dynamic programming. It is easiest to directly encode the recurrece as
a recursive function and to apply memoization.
The final result is

T′ � T + d(vgehr , vcake) − d(vcpa , vcake) − 1 +win(vgehr , vcpa).

2A note on notation: We denote by a ∧ b the boolean operation “and” and by a ∨ b the boolean operation
“or”.

∧
and

∨
are to ∧ and ∨ as

∑
is to +. We have

∧
x∈{} f (x) � 1 and

∨
x∈{} f (x) � 0.

4/6

Task cake_protection_agency

I.e. if the initial positions of mouse Gehr and the agent are a winning position for the
agent in the game we have defined, the agent can be dispatched at a time such that the
agent would reach the cake at the same time as mouse Gehr. Otherwise, the agent needs
to leave one time unit earlier in order to reach the cake strictly before mouse Gehr.
The total running time of this solution is dominated by the dynamic programming

algorithm, whose running time can be bounded by O(|V | (|V |+ |E |)). The total additional
memory usage is dominated by the DP table and is therefore at most O(|V |2).

1 const vector<Node> &G;
2 int v_cpa, int v_gehr, int v_cake;
3 int T;
4

5 vector<int> d_gehr, d_cpa, d_cake;
6 bool inEPrime(int from, const Edge &e) {
7 return d_cake[from] + e.weight == d_cake[e.to];
8 }
9

10 vector<vector<int>> memo;
11 int win(int v_g, int v_a) {
12 if (v_g == v_cake) {
13 return 0;
14 }
15 if (v_g == v_a) {
16 return 1;
17 }
18 if (memo[v_g][v_a] != -1) {
19 return memo[v_g][v_a];
20 }
21 bool result;
22 if (d_cake[v_a] <= d_cake[v_g]) {
23 // Gehr's turn
24 result = true;
25 for (Edge &e : G[v_g]) {
26 if (inEPrime(v_g, e)) {
27 result = result && win(e.to, v_a);
28 }
29 }
30 } else {
31 // Agent's turn
32 result = false;
33 for (Edge &e : G[v_a]) {
34 if (inEPrime(v_a, e)) {
35 result = result || win(v_g, e.to);
36 }
37 }
38 }
39 memo[v_g][v_a] = result;
40 return result;
41 }
42 int sub3() {
43 d_cpa = dijkstra(G, v_cpa);

5/6

Swiss Olympiad in Informatics

Round 2 Theoretical

44 d_gehr = dijkstra(G, v_gehr);
45 d_cake = dijkstra(G, v_cake);
46 return T + d_gehr[v_cake] - d_cpa[v_cake] - 1 + win(v_gehr, v_cpa);
47 }

6/6

	Cake Protection Agency
	Latest Starting Time
	Plenty of Agents
	One Agent

