TAKING THE
EULER TOUR

'C‘Ii&:;l‘v s X
N e

sy

Kbnigsberg Leonhard Euler
1736 1707 - 1783

[s there a walk in the graph that visits
every edge exactly once?

Euler Trail: A walk in a finite graph which
visits every edge exactly once.

Euler Cycle: An Euler trail which starts
and ends on the same vertex.

Given a graph G,

Does G has an Euler Cycle?

/ A
If there is an Euler Cycle then: 2 \\
LG " \ />< 2
: is connected™.
4 i /
2. All vertices have even degrees. \ 5 e

0

*all vertices with degree>0 are connected

Given a graph G,

Does G has an Euler Cycle?

3

No Euler Cycle in Konigsberg!

Maybe an Euler Trail?...

Given a graph G,

Does G has an Euler Trail?

3
[f there is an Euler Trail then: / \
2

1. Gis connected®. \ / \ /

2. At most two vertices have odd \ 5 /

degrees.

Given a graph G,

Does G has an Euler Trail?

3

3

No Euler Trail in Konigsberg!

There is an
Euler Cycle

Connected®, all
vertices have
even degrees

There is an
Euler Trail

Connected*, at most
2 vertices have
odd degrees

Summary:

Given a graph G,

* There is an Euler cycle in G if and only if G is connected and

all vertices have even degrees.

* There is an Euler trail in G if and only if G is connected and

at most 2 vertices have odd degrees.

So, it’s very easy to check if G has an Euler cycle or trail!

How can we find an Euler cycle?
Hierholzer ‘s Algorithm™(1873)

Preperations: / —

* Check if G is connected \ /></ \

* Check if all vertices have even /
degrees \ /

* Mark all edges “unvisited”

* start at any vertex

How can we find an Euler cycle?

Hierholzer ‘s Algorithm™(1873)

Main loop:

ST\
* if current vertex has an unvisited edge: \
use it to get to the next vertex /
and mark the edge “visited” \ /
o

 else (acycle is closed but maybe some

edged are still unvisited)

backtrack to a previously visited vertex

that still has an unvisited edge.

Implementation (cycle)

/X/;
/x/xh

Output: a

a

L

e h c e

f a

Stack S;

CUIT = a;

loop:

if there is unvisited edge e(curr, v):

push(curr, S);
mark e “visited”;
CUrr=v;

else:

output (curr);
if § is not empty:

curr = pop(S);

else: break;

Implementation (cycle)

b
a C Stack S;
\ / Curr = a;
loop:

d e
/ \ if there is unvisited edge e(curr, v):
f h push(curr, S);
8

mark e “visited”;

curr=v;
else:
output (curr);
. . . . if § is not empty:

curr = pop(S$);

| g [e] b [al

Running time:

O(IVI+[E|)

F

What about directed graphs?

Graph G has an Euler cycle if and only if:
1. Gisstrongly connected
2. For every vertex, the in-degree and out-degree is equal.

Algorithm is the same,
don't forget to reverse the output :)

Exarnple: Hailtonian Cycle/path/ ,

Example:

Task: Build a circle of 23 bits in which every 3-bits
sequence occurs exactly once.

3 bits sequences: 10

000 1 0
001

010 I l
011 1 0
100 N v 4

101 0 4 1

110

. 3 1
111 circle of 2° bits

Example:

Task: Build a circle of 24 bits in which every 4-bits
sequence occurs exactly once.

4 bits sequences:

0000 1 =0
0001 ,O’ \‘0\
0010 1 0
0100 0 0
0101

0110 (l) {
0111 1 J

1000 1 1
1001 Ny v

1010 1. -1
1011 01
1100 _ .
1101 circle of 2% bits
1110

1111

Example:

Task: Build a circle of 2¥ bits in which every K-bits
sequence occurs exactly once.

Hints:

* Euler cycle (of course...)

* The graph has 2% vertices

THANK YOU ©

