
TAKING THE

EULER TOUR

Leonhard Euler
1707 - 1783

Königsberg
1736

Is there a walk in the graph that visits
every edge exactly once?

Euler Trail: A walk in a finite graph which
 visits every edge exactly once.

Euler Cycle: An Euler trail which starts
 and ends on the same vertex.

Given a graph G,

Does G has an Euler Cycle?

1. G is connected*.

If there is an Euler Cycle then:

2. All vertices have even degrees.

2

2

2

4
4

4
4

*all vertices with degree>0 are connected

0

Given a graph G,

Does G has an Euler Cycle?

3

3

5 3

No Euler Cycle in Königsberg!

Maybe an Euler Trail?...

Given a graph G,

Does G has an Euler Trail?

1. G is connected*.

If there is an Euler Trail then:

2. At most two vertices have odd

degrees.

2

2

2

3
4

3

4

Given a graph G,

Does G has an Euler Trail?

3

3

5 3

No Euler Trail in Königsberg!

There is an
Euler Cycle

There is an
Euler Trail

Connected*, all
vertices have
even degrees

Connected*, at most
2 vertices have

odd degrees

Summary:

Given a graph G,

• There is an Euler cycle in G if and only if G is connected and

all vertices have even degrees.

• There is an Euler trail in G if and only if G is connected and

at most 2 vertices have odd degrees.

So, it’s very easy to check if G has an Euler cycle or trail!

How can we find an Euler cycle?

Hierholzer ‘s Algorithm*(1873)

Preperations:

• Check if G is connected

• Check if all vertices have even

degrees

• Mark all edges “unvisited”

• start at any vertex

How can we find an Euler cycle?

Hierholzer ‘s Algorithm*(1873)

Main loop:

• if current vertex has an unvisited edge:

 use it to get to the next vertex

 and mark the edge “visited”

• else (a cycle is closed but maybe some

 edged are still unvisited)

 backtrack to a previously visited vertex

 that still has an unvisited edge.

Implementation (cycle)

Stack

Output:

a

f

e d

c
b

a

b c

f

e

d

a g

h

g

a d b e c g f d e h a

Stack S;

curr = a;

loop:
 if there is unvisited edge e(curr, v):
 push(curr, S);
 mark e “visited”;
 curr=v;
 else:
 output (curr);
 if S is not empty:
 curr = pop(S);
 else: break;

h

Implementation (cycle)

a

f

e d

c
b

a

h

g

Stack S;

curr = a;
push(curr, S);

while S is not empty:
 if there is unused edge e(curr, v):
 mark e “used”;
 curr=v;
 push(curr, S);
 else:
 output (pop(S));
 curr = top(S);

a d f a

d e g b d

d

e

e c e h

Stack S;

curr = a;

loop:
 if there is unvisited edge e(curr, v):
 push(curr, S);
 mark e “visited”;
 curr=v;
 else:
 output (curr);
 if S is not empty:
 curr = pop(S);
 else: break;

O(|V|+|E|)

Running time:

What about directed graphs?

Graph G has an Euler cycle if and only if:

1. G is strongly connected

2. For every vertex, the in-degree and out-degree is equal.

Algorithm is the same,

don’t forget to reverse the output :)

Example:

Example: Hamiltonian cycle/path

Example:

3 bits sequences:

000
001
010
011
100
101
110
111

circle of 23 bits

0

0

0

1 0

1

1

1

Task: Build a circle of 23 bits in which every 3-bits
sequence occurs exactly once.

Example:

4 bits sequences:
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

circle of 24 bits

0
0

0

0

1

1
1

1 0
1

1

0

0

1
0

1

Task: Build a circle of 24 bits in which every 4-bits
sequence occurs exactly once.

Example:
Task: Build a circle of 2K bits in which every K-bits
sequence occurs exactly once.

Hints:

• Euler cycle (of course…)

• The graph has 2K-1 vertices

THANK YOU 

