
Introduction to Dynamic Programming

André Ryser
November 4, 2018

Swiss Olympiad in Informatics

Table of Contents

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

Introduction

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

What is dynamic programming?

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

What is dynamic programming?

Dynamic programming is…

• not an algorithm
• a technique

for solving problems (in particular optimization
problems) more efficiently.

What is dynamic programming?

Dynamic programming is…

• not an algorithm

• a technique

for solving problems (in particular optimization
problems) more efficiently.

What is dynamic programming?

Dynamic programming is…

• not an algorithm
• a technique

for solving problems (in particular optimization
problems) more efficiently.

What is dynamic programming?

Dynamic programming is…

• not an algorithm
• a technique for solving problems (in particular optimization

problems)

more efficiently.

What is dynamic programming?

Dynamic programming is…

• not an algorithm
• a technique for solving problems (in particular optimization

problems) more efficiently.

What is dynamic programming

DP is a technique that you may use when you can divide a problem
into subproblems and build the full solution using the partial
solutions, but the subproblems overlap and you end up solving the
same subproblems over and over again.

A dynamic program avoids this problem by remembering what it
has already done and not computing it again.

What is dynamic programming

DP is a technique that you may use when you can divide a problem
into subproblems and build the full solution using the partial
solutions, but the subproblems overlap and you end up solving the
same subproblems over and over again.
A dynamic program avoids this problem by remembering what it
has already done and not computing it again.

A simple example: Binomial coefficient

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

Binomial coefficient

Binomial coefficient intuition: How many ways to pick k elements
out of a set with n elements.

Definition:

Binom(n, k) =
(

n
k

)
=

n!
k!(n − k)!∀0 ≤ k ≤ n

What’s the problem?
Arithmetic Overflow, 20! already doesn’t fit into a 64bit integer.

Binomial coefficient

Binomial coefficient intuition: How many ways to pick k elements
out of a set with n elements. Definition:

Binom(n, k) =
(

n
k

)
=

n!
k!(n − k)!∀0 ≤ k ≤ n

What’s the problem?

Arithmetic Overflow, 20! already doesn’t fit into a 64bit integer.

Binomial coefficient

Binomial coefficient intuition: How many ways to pick k elements
out of a set with n elements. Definition:

Binom(n, k) =
(

n
k

)
=

n!
k!(n − k)!∀0 ≤ k ≤ n

What’s the problem?
Arithmetic Overflow, 20! already doesn’t fit into a 64bit integer.

Recursive Definition

To calculate the binomial coefficient we can also use
(n

0
)
=

(n
n
)
= 1∀n ≥ 0(n

k
)
=

(n−1
k−1

)
+

(n−1
k
)
∀1 ≤ k ≤ n − 1

Binomial coefficient: Intuitive algorithm

An intuitive way of computing the binomial coefficient woud be:

int Binom(int n, int k) {
if(k==0 || k == n) return 1;
return Binom(n-1, k-1) + Binom(n-1, k);

}

Binomial coefficiente: The problem

If you try to run this code to compute
(100

10
)
, you’d have to be very

patient to get an answer.

Why?

Binomial coefficiente: The problem

If you try to run this code to compute
(100

10
)
, you’d have to be very

patient to get an answer.
Why?

Binomial coefficiente: The problem

Our program computes the same values over and over.
Demo at whiteboard of

(4
2
)

Binomial coefficiente: The problem

This example shows us that the number of operations roughly
doubles with n.

We have an exponential running time...

Binomial coefficiente: The problem

This example shows us that the number of operations roughly
doubles with n.
We have an exponential running time...

Binomial coefficiente: The solution

We can do (much) better.

We don’t need to compute anything
twice:
Just remember the previous values! We can first compute lower
values and then combine them to get the next one. Demo at
whiteboard

Binomial coefficiente: The solution

We can do (much) better. We don’t need to compute anything
twice:

Just remember the previous values! We can first compute lower
values and then combine them to get the next one. Demo at
whiteboard

Binomial coefficiente: The solution

We can do (much) better. We don’t need to compute anything
twice:
Just remember the previous values!

We can first compute lower
values and then combine them to get the next one. Demo at
whiteboard

Binomial coefficiente: The solution

We can do (much) better. We don’t need to compute anything
twice:
Just remember the previous values! We can first compute lower
values and then combine them to get the next one.

Demo at
whiteboard

Binomial coefficiente: The solution

We can do (much) better. We don’t need to compute anything
twice:
Just remember the previous values! We can first compute lower
values and then combine them to get the next one. Demo at
whiteboard

Pascal’s triangle

A nicer a way to present it.
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Binomial coefficient: The solution

We compute all values (once) from
(0

0
)

up to
(n

k
)
:

int binom(int n, int k) {
vector<vector<int> > b(n+1, vector<int>(k+1));

for(int i = 0; i <=n) b[i][0] = 1;
for(int j = 0; j <=k) b[j][j] = 1;

for(int i = 1; i <= n; i++)
for(int j = 1; j <= i; j++)

b[i][j] = b[i-1][j-1] + b[i-1][j];
return b[n][k];

}

Our running time is now down to

Binomial coefficient: The solution

We compute all values (once) from
(0

0
)

up to
(n

k
)
:

int binom(int n, int k) {
vector<vector<int> > b(n+1, vector<int>(k+1));

for(int i = 0; i <=n) b[i][0] = 1;
for(int j = 0; j <=k) b[j][j] = 1;

for(int i = 1; i <= n; i++)
for(int j = 1; j <= i; j++)

b[i][j] = b[i-1][j-1] + b[i-1][j];
return b[n][k];

}

Our running time is now down to...

Binomial coefficient: The solution

We compute all values (once) from
(0

0
)

up to
(n

k
)
:

int binom(int n, int k) {
vector<vector<int> > b(n+1, vector<int>(k+1));

for(int i = 0; i <=n) b[i][0] = 1;
for(int j = 0; j <=k) b[j][j] = 1;

for(int i = 1; i <= n; i++)
for(int j = 1; j <= i; j++)

b[i][j] = b[i-1][j-1] + b[i-1][j];
return b[n][k];

}

Our running time is now down to O(n2).

Binomial coefficient: bonus solution

Bonus solution: you don’t need O(n2) space.

int binom(int n, int k) {
vector<int> b(n+1, 1);
for(int i = 1; i <= n; i++) {

for(int j = i-1; j > 0; j--) {
b[j] +=b[j-1];

}
}
return b[k];

}

The recipe for creating a good DP solution

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

The recipe for creating a good DP solution

This was a simple example, but the same schemata apply to much
more complicated problems. We shall now generalize what we’ve
learned from Binomial coefficient and apply it to other problems.

DP’s four steps

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

DP’s four steps

Here is a classic method of thinking about dynamic programming,
using four basic steps.

Think first, code second!

1. Define subproblems.
2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.
3. Find base case(s).
4. Which is the relevant subproblem?

DP’s four steps

Here is a classic method of thinking about dynamic programming,
using four basic steps.

Think first, code second!

1. Define subproblems.
2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.
3. Find base case(s).
4. Which is the relevant subproblem?

DP’s four steps

Here is a classic method of thinking about dynamic programming,
using four basic steps.

Think first, code second!

1. Define subproblems.

2. Find a general recurrence formula to solve a subproblem using
the solution to other subproblems.

3. Find base case(s).
4. Which is the relevant subproblem?

DP’s four steps

Here is a classic method of thinking about dynamic programming,
using four basic steps.

Think first, code second!

1. Define subproblems.
2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.

3. Find base case(s).
4. Which is the relevant subproblem?

DP’s four steps

Here is a classic method of thinking about dynamic programming,
using four basic steps.

Think first, code second!

1. Define subproblems.
2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.
3. Find base case(s).

4. Which is the relevant subproblem?

DP’s four steps

Here is a classic method of thinking about dynamic programming,
using four basic steps.

Think first, code second!

1. Define subproblems.
2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.
3. Find base case(s).
4. Which is the relevant subproblem?

DP’s four steps and Binomial coefficient

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:

(i
j
)
.

2. General formula:

(i
j
)
=

(i−1
j−1

)
+
(i−1

j−1
)
.

3. Base cases:

(i
0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:

(n
k
)
.

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:

(i
j
)
.

2. General formula:

(i
j
)
=

(i−1
j−1

)
+
(i−1

j−1
)
.

3. Base cases:

(i
0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:

(n
k
)
.

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:
(i

j
)
.

2. General formula:

(i
j
)
=

(i−1
j−1

)
+
(i−1

j−1
)
.

3. Base cases:

(i
0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:

(n
k
)
.

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:
(i

j
)
.

2. General formula:

(i
j
)
=

(i−1
j−1

)
+
(i−1

j−1
)
.

3. Base cases:

(i
0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:

(n
k
)
.

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:
(i

j
)
.

2. General formula:
(i

j
)
=

(i−1
j−1

)
+

(i−1
j−1

)
.

3. Base cases:

(i
0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:

(n
k
)
.

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:
(i

j
)
.

2. General formula:
(i

j
)
=

(i−1
j−1

)
+

(i−1
j−1

)
.

3. Base cases:

(i
0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:

(n
k
)
.

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:
(i

j
)
.

2. General formula:
(i

j
)
=

(i−1
j−1

)
+

(i−1
j−1

)
.

3. Base cases:
(i

0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:

(n
k
)
.

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:
(i

j
)
.

2. General formula:
(i

j
)
=

(i−1
j−1

)
+

(i−1
j−1

)
.

3. Base cases:
(i

0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:

(n
k
)
.

DP’s four steps and Binomial coefficient

How does our solution for Binomial coefficient match our four
steps?

1. Suproblems:
(i

j
)
.

2. General formula:
(i

j
)
=

(i−1
j−1

)
+

(i−1
j−1

)
.

3. Base cases:
(i

0
)
= 1,

(i
i
)
= 1.

4. Relevant suproblem:
(n

k
)
.

How to implement a DP solution

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

Subproblem ordering

— Okay, I’ve followed your four steps. How do I use this to code a
solution now?

Subproblem ordering

Most subproblems can be solved only using other subproblems.

In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.
2. Compute other subproblems which only need base cases.
3. Continue computing further subproblems which are now

solvable.
4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming
problems. Sometimes, a viable ordering is obvious, sometimes it is
not; the best way to get used to it is to solve a lot of this kind of
problems.

Subproblem ordering

Most subproblems can be solved only using other subproblems.
In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.
2. Compute other subproblems which only need base cases.
3. Continue computing further subproblems which are now

solvable.
4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming
problems. Sometimes, a viable ordering is obvious, sometimes it is
not; the best way to get used to it is to solve a lot of this kind of
problems.

Subproblem ordering

Most subproblems can be solved only using other subproblems.
In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.

2. Compute other subproblems which only need base cases.
3. Continue computing further subproblems which are now

solvable.
4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming
problems. Sometimes, a viable ordering is obvious, sometimes it is
not; the best way to get used to it is to solve a lot of this kind of
problems.

Subproblem ordering

Most subproblems can be solved only using other subproblems.
In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.
2. Compute other subproblems which only need base cases.

3. Continue computing further subproblems which are now
solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming
problems. Sometimes, a viable ordering is obvious, sometimes it is
not; the best way to get used to it is to solve a lot of this kind of
problems.

Subproblem ordering

Most subproblems can be solved only using other subproblems.
In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.
2. Compute other subproblems which only need base cases.
3. Continue computing further subproblems which are now

solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming
problems. Sometimes, a viable ordering is obvious, sometimes it is
not; the best way to get used to it is to solve a lot of this kind of
problems.

Subproblem ordering

Most subproblems can be solved only using other subproblems.
In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.
2. Compute other subproblems which only need base cases.
3. Continue computing further subproblems which are now

solvable.
4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming
problems. Sometimes, a viable ordering is obvious, sometimes it is
not; the best way to get used to it is to solve a lot of this kind of
problems.

Subproblem ordering

Most subproblems can be solved only using other subproblems.
In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.
2. Compute other subproblems which only need base cases.
3. Continue computing further subproblems which are now

solvable.
4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming
problems. Sometimes, a viable ordering is obvious, sometimes it is
not; the best way to get used to it is to solve a lot of this kind of
problems.

Another example: Rod cutting

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

Rod cutting: Task statement

The problem ist the following:

• Serling Enterprises buys long stell rods and cuts them into
shorter rods, which it then sells.

• They want to know how to cut them to make the most profit.
• They get delivered rods of length n.
• Given are for i = 1, 2, . . . , n the price pi they can charge for a

rod of length icm.

Rod cutting: Task statement

The problem ist the following:

• Serling Enterprises buys long stell rods and cuts them into
shorter rods, which it then sells.

• They want to know how to cut them to make the most profit.
• They get delivered rods of length n.
• Given are for i = 1, 2, . . . , n the price pi they can charge for a

rod of length icm.

Rod cutting: Task statement

The problem ist the following:

• Serling Enterprises buys long stell rods and cuts them into
shorter rods, which it then sells.

• They want to know how to cut them to make the most profit.

• They get delivered rods of length n.
• Given are for i = 1, 2, . . . , n the price pi they can charge for a

rod of length icm.

Rod cutting: Task statement

The problem ist the following:

• Serling Enterprises buys long stell rods and cuts them into
shorter rods, which it then sells.

• They want to know how to cut them to make the most profit.
• They get delivered rods of length n.

• Given are for i = 1, 2, . . . , n the price pi they can charge for a
rod of length icm.

Rod cutting: Task statement

The problem ist the following:

• Serling Enterprises buys long stell rods and cuts them into
shorter rods, which it then sells.

• They want to know how to cut them to make the most profit.
• They get delivered rods of length n.
• Given are for i = 1, 2, . . . , n the price pi they can charge for a

rod of length icm.

Rod cutting: Example

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 10

Rod Cutting: DP’s four steps

How do we modelize this problem using the four steps ?

Rod Cutting: Finding Subproblems

Suppose we know how to optimally cut rods of length
1, 2, . . . , k − 1: r1, r2, . . . , rk−1. We have the following possibilites
to cut a rod:

1. Don’t cut just charge pk

2. Cut off a piece of length 1 at the end: p1 + rk−1.
3. Cut off a pice of length 2 at the end: p2 + rk−2.
4. …
5. Cut off a pice of length k-1 at the end: pk−1 + r1

rk should be maximised, take the max of all possibilities.

rk = max(pk, p1 + rk−1, p2 + rk−2, . . . , pk−1 + r1)

Rod Cutting: Finding Subproblems

Suppose we know how to optimally cut rods of length
1, 2, . . . , k − 1: r1, r2, . . . , rk−1. We have the following possibilites
to cut a rod:

1. Don’t cut just charge pk

2. Cut off a piece of length 1 at the end: p1 + rk−1.
3. Cut off a pice of length 2 at the end: p2 + rk−2.
4. …
5. Cut off a pice of length k-1 at the end: pk−1 + r1

rk should be maximised, take the max of all possibilities.

rk = max(pk, p1 + rk−1, p2 + rk−2, . . . , pk−1 + r1)

Rod Cutting: Finding Subproblems

Suppose we know how to optimally cut rods of length
1, 2, . . . , k − 1: r1, r2, . . . , rk−1. We have the following possibilites
to cut a rod:

1. Don’t cut just charge pk

2. Cut off a piece of length 1 at the end: p1 + rk−1.

3. Cut off a pice of length 2 at the end: p2 + rk−2.
4. …
5. Cut off a pice of length k-1 at the end: pk−1 + r1

rk should be maximised, take the max of all possibilities.

rk = max(pk, p1 + rk−1, p2 + rk−2, . . . , pk−1 + r1)

Rod Cutting: Finding Subproblems

Suppose we know how to optimally cut rods of length
1, 2, . . . , k − 1: r1, r2, . . . , rk−1. We have the following possibilites
to cut a rod:

1. Don’t cut just charge pk

2. Cut off a piece of length 1 at the end: p1 + rk−1.
3. Cut off a pice of length 2 at the end: p2 + rk−2.

4. …
5. Cut off a pice of length k-1 at the end: pk−1 + r1

rk should be maximised, take the max of all possibilities.

rk = max(pk, p1 + rk−1, p2 + rk−2, . . . , pk−1 + r1)

Rod Cutting: Finding Subproblems

Suppose we know how to optimally cut rods of length
1, 2, . . . , k − 1: r1, r2, . . . , rk−1. We have the following possibilites
to cut a rod:

1. Don’t cut just charge pk

2. Cut off a piece of length 1 at the end: p1 + rk−1.
3. Cut off a pice of length 2 at the end: p2 + rk−2.
4. …

5. Cut off a pice of length k-1 at the end: pk−1 + r1

rk should be maximised, take the max of all possibilities.

rk = max(pk, p1 + rk−1, p2 + rk−2, . . . , pk−1 + r1)

Rod Cutting: Finding Subproblems

Suppose we know how to optimally cut rods of length
1, 2, . . . , k − 1: r1, r2, . . . , rk−1. We have the following possibilites
to cut a rod:

1. Don’t cut just charge pk

2. Cut off a piece of length 1 at the end: p1 + rk−1.
3. Cut off a pice of length 2 at the end: p2 + rk−2.
4. …
5. Cut off a pice of length k-1 at the end: pk−1 + r1

rk should be maximised, take the max of all possibilities.

rk = max(pk, p1 + rk−1, p2 + rk−2, . . . , pk−1 + r1)

Rod Cutting: Finding Subproblems

Suppose we know how to optimally cut rods of length
1, 2, . . . , k − 1: r1, r2, . . . , rk−1. We have the following possibilites
to cut a rod:

1. Don’t cut just charge pk

2. Cut off a piece of length 1 at the end: p1 + rk−1.
3. Cut off a pice of length 2 at the end: p2 + rk−2.
4. …
5. Cut off a pice of length k-1 at the end: pk−1 + r1

rk should be maximised, take the max of all possibilities.

rk = max(pk, p1 + rk−1, p2 + rk−2, . . . , pk−1 + r1)

Rod cutting: Base case

The problem is trivial for k = 0: r0 = 0

An argument coud be made that no base case is necessairy. The
previous formula r1 does not need any other ri.

However with r0 we can rewrite it:

rk = max
1≤i≤n

(pi + rn−i)

.

Rod cutting: Slow Solution

cut_rod(vector<int> &p, n) {
if(n == 0)

return 0;
r = -1;
for(int i = 1; i <= n; i++) {

r = max(r, p[i] + cut_rod(p, n-i))
}
return r;

}

Rod cutting: Computation

We don’t want to compute subproblems twice. We just compute
them in the order in which they’re needed and store them.

The order in which they’re needed, like for Binomial Coefficient, is
pretty obvious. Every subproblem relies on earlier subproblems
only, so we solve them in increasing order.
In fact it relies on all previous subproblems.

Rod cutting: Computation

We don’t want to compute subproblems twice. We just compute
them in the order in which they’re needed and store them.
The order in which they’re needed, like for Binomial Coefficient, is
pretty obvious. Every subproblem relies on earlier subproblems
only, so we solve them in increasing order.

In fact it relies on all previous subproblems.

Rod cutting: Computation

We don’t want to compute subproblems twice. We just compute
them in the order in which they’re needed and store them.
The order in which they’re needed, like for Binomial Coefficient, is
pretty obvious. Every subproblem relies on earlier subproblems
only, so we solve them in increasing order.
In fact it relies on all previous subproblems.

Rod cutting: DP Solution

// p[1..n], no price for rod with length 0
cut_rod(vector<int> &p, n) {

vector<int> r(n+1, 0);
for(int i = 1; i <= n; i++) {

for(int k = 1; k <= i; i++) {
r[i] = max(r[i], p[k] + r[i-k]);

}
}
return r[n];

}

Runtime analysis

How fast des this solution run?

O(n2)

Runtime analysis

How fast des this solution run? O(n2)

Conclusion

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Binomial coefficient

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Binomial coefficient

2.3 How to implement a DP solution

2.4 Another example: Rod cutting

3. Conclusion

When is DP useful?

• When you can divide a problem into subproblems.

• When the subproblems overlap.
• For example, it enables you to compute some recursive

functions faster, for example Binomial coefficient.
• A lot of optimization problems require a dynamic

programming solution.

When is DP useful?

• When you can divide a problem into subproblems.
• When the subproblems overlap.

• For example, it enables you to compute some recursive
functions faster, for example Binomial coefficient.

• A lot of optimization problems require a dynamic
programming solution.

When is DP useful?

• When you can divide a problem into subproblems.
• When the subproblems overlap.
• For example, it enables you to compute some recursive

functions faster, for example Binomial coefficient.

• A lot of optimization problems require a dynamic
programming solution.

When is DP useful?

• When you can divide a problem into subproblems.
• When the subproblems overlap.
• For example, it enables you to compute some recursive

functions faster, for example Binomial coefficient.
• A lot of optimization problems require a dynamic

programming solution.

Some remarks about recursion

It is also possible to keep the recursive function and store already
stored values, for example in a map.

map<pair<int,int>,int> m;
int Binom(int n, int k) {

if(k==0 || k == n) return 1;

pair<int, int> p = make_pair(n, k);
if(m[p])

return m[p];
return m[p] = Binom(n-1, k-1) + Binom(n-1, k);

}

Some remarks about recursion

In cases such as Binomial coefficient it’s not necessary to store all
previous values. Recursion can also cause further problems (stack
limit exceeded). The approach we used, building up the solutions
in order, is called ”bottom-up”, and it is good to get used to it.

How to be good at DP

• DP is hard

for most people.
• The concept is simple, but

applying it to a problem and
implementing the solution is difficult.

• Always think before you code!
• Most important of all: solve, solve, solve!

How to be good at DP

• DP is hard for most people.

• The concept is simple, but

applying it to a problem and
implementing the solution is difficult.

• Always think before you code!
• Most important of all: solve, solve, solve!

How to be good at DP

• DP is hard for most people.
• The concept is simple, but...

applying it to a problem and
implementing the solution is difficult.

• Always think before you code!
• Most important of all: solve, solve, solve!

How to be good at DP

• DP is hard for most people.
• The concept is simple, but applying it to a problem and

implementing the solution is difficult.

• Always think before you code!
• Most important of all: solve, solve, solve!

How to be good at DP

• DP is hard for most people.
• The concept is simple, but applying it to a problem and

implementing the solution is difficult.
• Always think before you code!

• Most important of all: solve, solve, solve!

How to be good at DP

• DP is hard for most people.
• The concept is simple, but applying it to a problem and

implementing the solution is difficult.
• Always think before you code!
• Most important of all: solve, solve, solve!

What’s next:
Solve DP tasks on the grader.

	Introduction
	What is dynamic programming?
	A simple example: Binomial coefficient

	The recipe for creating a good DP solution
	DP's four steps
	DP's four steps and Binomial coefficient
	How to implement a DP solution
	Another example: Rod cutting

	Conclusion

